
From Goals to Organisations: automated
organisation generator for MAS⋆

Cleber Jorge Amaral1,2[0000−0003−3877−6114] and
Jomi Fred Hübner2[0000−0001−9355−822X]

1 Federal Institute of Santa Catarina (IFSC), São José, SC, Brazil
cleber.amaral@ifsc.edu.br

http://www.ifsc.edu.br/
2 Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil

jomi.hubner@ufsc.br

http://pgeas.ufsc.br/en/

Abstract. An explicit organisational structure helps entrants in open
multi-agent systems (MAS) to reason about their positions in the organi-
sation for cooperating to achieve mutual goals. In spite of its importance,
there are few studies on automatic organisation generators that create
explicit organisational structures. This paper introduces GoOrg, a pro-
posal for automatic design of organisations. Our approach considers as
inputs a goal decomposition tree (gdt) and user preferences. From the
gdt with annotations such as necessary skills to achieve organisational
goals, predicted workload and throughput, GoOrg creates roles in the
form of an organisational chart. The main challenge is to define strate-
gies to search the space of all organisational structures for those that
can achieve the goals respecting constraints and taking into account user
preferences. We can, for instance, prefer a flatter or a taller structure,
more specialist or more generalist roles, and we can accept matrix con-
nections or not.

Keywords: Automated organisation design · Organisational chart · Or-
ganisational structure · Open Multi-Agent Systems

1 Introduction

The organisational structure is an instrument used to split, organise and coordi-
nate activities of Multi-Agent System (MAS) organisations. It reflects authority
relations and responsibility for goals, providing a typical way to assign tasks to
agents [15]. An explicit organisational structure helps agents to know where they
fit relatively to others and which are their responsibilities [9, 13, 21, 30].

Currently, there are a few studies on the automatic design of organisations
that generates explicit organisational structures [23, 10, 26, 17]. Although sem-
inal, there is still space for improvements, for instance, automating the roles
creation process. This paper presents an ongoing work in the context of a PhD

⋆ Supported by Petrobras project AG-BR, IFSC and UFSC.

2 Amaral, C.J. and Hübner, J.F.

thesis that proposes GoOrg, an automated organisation generator which takes a
goal decomposition tree (gdt) and produces as output an organisational chart,
i.e., an explicit organisational structure, according to user preferences. The main
novelty of our method is its capability of creating roles from the inputs. In this
sense, our method may produce a larger range of possible organisational charts.

To discuss the problem and to describe the proposed generator, Section 2
presents the concept of automatic organisation design and the state of art of
this research area. Section 3 describes the problem, i.e., the challenge we want
to overcome. Section 4 presents our organisation generator GoOrg. Section 5
describes the research method we are applying in, the status of this research
and planned evaluation. Finally, Section 6 presents related works and Section 7
presents our conclusions.

2 Organisation design

Pattinson et al [22] define organisation design as “the problem of choosing the
best organisation class - from a set of class descriptions - given knowledge about
the organisation’s purpose (goal, task, and constraints on the goal) and the en-
vironment in which the organisation is to operate”. Given necessary input, an
organisation generator can give as output organisational aspects, such as, struc-
ture, goals definitions, strategy, how leadership will work, which reward system
will be used, among others [2]. We have identified three classes of organisation
generators in the MAS domain [1].

The first class is the automated organisation design by task planning. These
generators usually create problem-driven organisations, for specific and generally
short term purposes [8]. The organisational structure is typically not explicit
being an unintended result of a task allocation process. Such generators are
focused on solving a given problem by decomposing tasks, allocating them on
the available agents [4]. Agents are previously known, and usually, roles are not
necessary. The agents generally cooperate by fulfilling their tasks which, when
combined, implies in the achievement of global goals.

The second class uses self-organisation approaches. In this class, the organisa-
tions usually emerge by agents common interest and interactions [13]. Resulting
organisations are dynamic, may operate continuously, have overlapping tasks,
have no external or central control, and hierarchy and information flow in many
directions [32]. The organisational structure is an informal implicit outcome of
this bottom-up process. The target of this method is to solve some problem and
not precisely to carefully design an organisation [26, 28].

Finally, the third class is the automated explicit organisation generators. It
is focused “on a specification of desired outcomes and the course of actions
for achieving them, analysis of the organisational environment and available
resources, allocation of those resources and development of organisational struc-
tures and control system” [15]. It considers inputs such as organisational goals,
available agents, resources and performance targets, producing explicit organi-

From Goals to Organisations: automated organisation generator for MAS 3

sation definitions, which may include roles, constraints, assignments of respon-
sibilities, hierarchy and other relations.

The first class can provide a very efficient way to allocate tasks among agents
when the MAS is solving a previously known problem, usually in deterministic
environments. However, it may lack the ability to deal with entrants in case of
open systems, because it is supposed to know at planning time the available
agents. In this sense, a new agent would not know what to do and how to
cooperate unless a replanning is triggered, which can be computationally heavy.

Whether dealing with uncertainty and dynamic environments, the second
class has advantages over other classes, which cannot deal with unpredictable
situations [13]. However, in some cases, an entrant of an open system would need
to negotiate with other agents his participation what may be slow to accommo-
date due to message exchanging.

Alternatively, the latter class cares on designing explicit structures which
foster entrances and exits [11]. When adopting a role, an entrant receives its re-
sponsibilities, starting to cooperate with other organisational members. In many
cases, an entrance does not require any extra designing effort since the roles
already have assigned tasks. An exit works in the same way. A role, as an ab-
stract description of a position in the system, is a fundamental concept in this
class [23].

3 Organisation Design Problem

This research proposes to develop an automated explicit organisational generator.
We hypothesise that it is possible to create roles from a gdt automatically. A
gdt is a plan to achieve the main goal of the system, which includes operators
that ensure that the decomposition satisfaction is equivalent to the main goal
satisfaction [24].

In short, our proposal assigns goals to roles in a structured organisational
chart taking into consideration some characteristics of the goals such as the ones
that have the same parent goal, require the same skills to be performed, have a
low predicted workload, etc. Additionally, design preferences can also determine
whether to gather goals into a role or not, e.g., whether it is preferred a flat-
ter or taller organisation; more specialist or generalist roles, if matrix relations
are allowed or not, maximum workload per agent, etc. Moreover, the predicted
throughput associated with a goal may indicate the need for the creation of new
hierarchy levels and a performer index may imply that the same agent must, or
must not, perform some goals.

For example, in a gdt for Printed Circuit Board (PCB) production, shown in
Fig. 1a, the main goal is decomposed into two sub-goals: Buy Supplies and PCB
Assembly. Buy Supplies also has two sub-goals: Buy Components and Buy Other
Supplies. For these sub-goals, the skill Purchase is associated, which means that
the agent(s) that will perform both buy sub-goals must be able to purchase items.
The goal PCB Assembly has three sub-goals: Apply Paste, Place Components

4 Amaral, C.J. and Hübner, J.F.

Fig. 1. Automated design for PCB Production. a) Inputs: goals tree and necessary
skills. b) Output: organisational chart with the more generalist roles considering inputs.

and Soldering Components. The first is associated with the skill Print, the second
with the skill Pick and Place and the latter with the skill Heat.

Fig. 1b shows a possible organisational chart based on the given gdt config-
ured to be more generalist. In this example, the sub-goals Buy Components and
Buy Other Supplies are assigned to the same role. In this sense, the same agent
will perform both Components and Other Supplies purchases. This created role
was placed below the Purchasing Coordinator role, as a subordinate.

However, one may ask: “is that solution the best one to choose?”. Still, there
is no sufficient information to tell whether that structure is suitable or not. For
instance, how many PCB’s are being produced per hour? How many different
models are being produced? Are there other available resources? Any privacy
requirement? These questions regard to varying situations in which the chosen
structure depends on.

Fig. 2. Which organisational structure should be chosen?

From Goals to Organisations: automated organisation generator for MAS 5

Fig. 2 illustrates how diverse can the results be for the same given gdt. There
is a solution in which only three roles were created in a very generalist and flat
organisational structure. Another solution goes in the opposite direction, being
very tall (hierarchical) and specialised. In fact, many aspects can influence or-
ganisational structures outcomes such as the chained sub-goals, agents’ limited
skills and goals fulfilment capacity, agents’ communication capabilities and pri-
vacy needs, and so on [20]. Our proposal intends to address this problem by
adding annotations to the goals to generate and choose a suitable organisational
structure.

4 Proposed Method

We investigate the use of search algorithms to address the problem of creating
and choosing an organisational structure. In this sense, the search space O is
composed of all possible organisational charts o ∈ O. Each state o is composed
of: (i) a set of role identifiers used in the organisational chart; (ii) the function
gr for addressing the set of goals assigned to each role; (iii) the function pr for
addressing the parent of each role which represent its immediate superior in the
organisational chart where ε represents “no parent”, so that the root role r has
pr(r) = ε; and (iv) the function sr for mapping the set of skills in S which are
associated with each role3.

o = ⟨R,gr, pr, sr⟩
gr ∶ R → 2G

pr ∶ R → R ∪ {ε}
sr ∶ R → 2S

We can thus state that GoOrg searches for an organisational chart o ∈ O that
is suitable for a particular gdt. A gdt is composed of: (i) a set of goal identifiers
G; (ii) the function pg that returns the parent of each goal of the tree where
ε represents “no parent”, so that the root goal g has pg(g) = ε; and (iii) the
function sg that addresses the set of necessary skills to achieve a given goal.

gdt = ⟨G,pg, sg⟩
pg ∶ G→ G ∪ {ε}

sg ∶ G→ 2S

The difference of G and the set of goals assigned to roles is the set of not
allocated goals nag, where:

nag(gdt, o) = gdt.G ∖ ⋃
r∈o.R

gr(r)

3 In a future work we will add other properties of goals and inputs for GoOrg.

6 Amaral, C.J. and Hübner, J.F.

4.1 State Transformations

All possible organisations populate the search space. To help the search for
organisational charts, we define a transformation relation between two states.
Fig. 3 represents each of the currently supported transformations in a respective
area. Top and bottom of each area show respectively previous and final states.
On each area, the graph on the left side is a gdt with three goals. Grey goals are
the ones that were already assigned, and the black one is the goal that is being
assigned. The graph on the right represents the roles of the organisational chart
that is being created. The information between brackets describes the assigned
goals, and eventually below it has the necessary skills to perform the respective
role. Grey roles already exist, and the black one represents the role which is
being explored for applying transformations.

b2 c2 d2

c1b1 d1

a2

a1

Empty
Organisational

Chart

g0

g1 g2

g0

g1 g2

g0

g1 g2

g0

g1 g2

g0

g1 g2

g0

g1 g2

g0

g1 g2

g0

g1 g2

[g0]
r0

[g0]
r0

[g1]
r1

[g0]
r0

[g0]
r0

[g0,g1]
r0

[g0]
r0

[g1,g2]
r1

[g0]
r0

[g1]
r1

Fig. 3. Supported transformations.

In this illustration, we have: (a) the root goal generates the root role; (b)
a sub-goal is assigned to a role to be subordinate of the role that contains its
parent goal; (c) a sub-goal is vertically brought joining to the role that includes
its parent goal; and (d) the sub-goal is horizontally carried joining to the role that
contains its sibling sub-goal. For instance, the first transformation is illustrated
on the area a, i.e., Fig. 3a shows the transformation of a1 into a2. In this
case, the root goal g0 is going to be assigned and the organisational chart is
empty as represented on part a1. After this transformation the chart has the
role r0 as represented by part a2. Considering the given input as pg(g) = ε, the
transformation for adding the root role is as follows:

o = ⟨{},{},{},{}⟩
addRootRole(g)

o′ = ⟨{r},{r↦ {g}},{r↦ ε},{r↦ sg(g)}⟩
On the area b of Fig. 3 the goal g1 was assigned to a new role r1 added as a

subordinate of r0. This transformation is a possible process after the transfor-
mation displayed on area a. For this case, to add the role r as subordinate of r′

From Goals to Organisations: automated organisation generator for MAS 7

and allocate goal g to r, we require that g is a sub-goal of g′ (pg(g) = g′) and g′

is already allocated to r′ (g′ ∈ gr(r′)) and have the following transformation:

o = ⟨R,gr, pr, sr⟩
addSubordinate(g, r′)

o′ = ⟨R ∪ {r}, gr ∪ {r↦ {g}}, pr ∪ {r↦ r’}, sr ∪ {r↦ sg(g)}⟩

On area c the goal g1 was assigned to the existing role r0 joining with the
previously assigned goal g0. Again it can be illustrated from the state displayed
on area a. In this case, there is no new role, the goal to be assigned is joined
with a previously assigned goal g0. Formally, let the input be pg(g) = g′, and
considering that {r′ ↦ g′} ∈ gr, the transformation for joining a subordinate is
as follows:

o = ⟨R,gr, pr, sr⟩
joinASubordinate(g, r′)

o′ = ⟨R,gr ∪ {r’↦ {g}}, pr, sr ∪ {r’↦ sg(g)⟩

Finally, on area d the goal g2 was assigned to the existing role r1 joining
with the previously assigned goal g1. This transformation can be applied from the
state illustrated on area b. In this case, let the input be pg(g) = g′′, there is a goal
g′ which parent is same, i.e., pg(g′) = g′′, and considering that {r′′ ↦ g′′} ∈ gr
and {r′ ↦ g′} ∈ gr. In this sense, the transformation for joining a pair is as
follows:

o = ⟨R,gr, pr, sr⟩
joinAPair(g, r′)

o′ = ⟨R,gr ∪ {r’↦ {g}, pr, sr ∪ {r’↦ sg(g)}⟩

In fact, a goal can be assigned into a role in many ways. Currently, besides
the parent relation of assigned goal(s), the associated necessary skills are also
being taking into account. The parent is the way the algorithm use to assume
relations among goals. A goal that is parent or a sibling of another potentially
can be joined in the same role or it can be created as a close role, being a
subordinate, according to the relation. The decision to join or not depends on
the skills. The role skills must be compatible to be joined, which means, the role
must already have the necessary skills of a goal candidate to be joined.

4.2 The Search Tree

To illustrate how the algorithm performs the search, Fig. 4 shows a gdt with
three goals. There is a parent goal (g0) and two sub-goals (g1 and g2). To be
fulfilled, g1 requires the skill s1. In the given gdt, two goals have no annotation.
In case of g1, since it requires the skill s1, a role able to perform s1 can be

8 Amaral, C.J. and Hübner, J.F.

g0

g1
s1

g2

Fig. 4. Example of a simple goal decomposition tree (gdt).

assigned to other goals that also requires s1 or does not require anything. Of
course, a role that has no skills associated cannot perform the goal g1.

The algorithm creates and visits states, as illustrated in Fig. 5. The trans-
formation of making the root goal be the root role of the organisational chart
generates the first state. As expected, the first transformation has removed the
element g0 from the list of to assign goals, assigning it to the just created role
called r0. The three possible successors of this state, is to add a role to assign g1
as a subordinate of r0, add a role for g2 as a subordinate of r0 or even, bring up
g2 assigning it to r0, joining with other assigned goal(s) since their skills match.

root role

addSubordinate addSubordinate

joinAPairaddSubordinate joinASubordinate addSubordinate

[g0]
r0

Empty
Organisational

Chart

[g0]
r0

[g1]
s1

r1
[g2]
r2

[g0]
r0

[g2]
r1

g0

g1
s1

g2 [g0,g2]
r0

g0

g1
s1

g2

g0

g1
s1

g2

Duplicated! Solution #2 Solution #3
[g1]
s1

r1

addSubordinate

joinASubordinate

g0

g1
s1

g2

g0

g1
s1

g2

g0

g1
s1

g2

g0

g1
s1

g2

g0

g1
s1

g2
[g1,g2]

s1

r1

[g1]
s1

r1

[g0]
r0

[g0]
r0

[g0,g2]
r0

[g0]
r0

[g1]
s1

r2
[g2]
r1

g0

g1
s1

g2

Solution #1

Fig. 5. Step by step of state search with all possible solutions for the given gdt.

Applying the transformations in the just created state on the left, where the
goal g2 was assigned to the role r1, it creates a role r2 to assign g1 putting it as a
subordinate of r0. This is a target state since all goals were assigned successfully.
This state is represented by the area with the label “Solution #1”. The next area

From Goals to Organisations: automated organisation generator for MAS 9

on the right is a duplicated solution. Indeed, our method ignores the role name,
using only assigned goals and parent relation to check redundancy, which is the
case of solutions #1 and #2. Still, there are other solutions, as indicated by the
other two areas.

Table 1 shows the referred solutions, or target states, generated by this
method. The “Solution #1” is the most obvious chart, which is the generation
of a role for each goal. The “Solution #2” is the result of joining horizontally the
goals g1 and g2. It is possible because these goals are siblings and also the skills
are compatible. The “Solution #3” is the result of joining vertically the goals g0
and g2. It was possible because the skills are compatible; in this case, both goals
have no necessary skills. The arrows represent parent relations among goals.

Table 1. Organisational charts for a simple goals tree having a goal with an annotation

Solution Chart Description

#1
[g0]
r0

[g1]
s1

r1
[g2]
r2

[g0]
r0

[g1,g2]
s1

r1

[g0,g2]
r0

[g1]
s1

r1

Organisational chart from adding two subordinates (r1 and r2) to the
role r0. The same result would be achieved adding either r1 or r2 as
subordinate of r0 and later add the other as a pair. This is the most
specialised solution for the given goals tree.

#2

[g0]
r0

[g1,g2]
s1

r1

Organisational chart from adding r1 as subordinate of r0 and then
joining the goals g1 and g2 into the role r1. It is possible because
before assigning g2 the role r1 already had the skills needed by g2,
which is actually nothing. The other way round would not be possible
(g2 has not s1). It is one of the more generalist solutions for the given
goals tree.

#3
[g0,g2]
r0

[g1]
s1

r1

Organisational chart from joining g0 and g2, since g0 has all the
necessary skills needed by g2. Later r1 was added as a subordinate of
r0. This solution is the more generalised and one of the more generalist
solutions for the given goals tree.

In terms of hierarchy, i.e., the number of levels, all three solutions have the
same height. In this case, it is not applicable any preference to choose a flatter
or taller hierarchy. In terms of specialisation, “Solution #1” has more specialist
roles, and the other solutions have more generalist roles for the given gdt.

Regarding the “Solution #2”, one may ask: why g2 joined with g1 and not
the other way round? The reason is that a role created to perform g2 does not
have any skills associated, and g1 needs the skill s1 to be performed. Since there
is a sub-goal which has a skill associated, it was not possible to assign all the
goals into a unique role. It would be the chart with more generalist roles and also
the flattest solution since it would have assigned g0, g1 and g2 into an unique
role.

10 Amaral, C.J. and Hübner, J.F.

4.3 The Search Algorithm

The proposed method for creating and choosing an organisational structure uses
uninformed search also called blind search. We are using the well-known depth
state-space search algorithm to illustrate how GoOrg is being implemented. As
presented in Algorithm 1, it starts adding to a stack the given first state o0 ∈ O.

Algorithm 1: Depth-limited Search

Data: Organisation o0
Result: Organisation
Stack n
begin

n.push(o0)
while n ≠ ∅ do

o← n.pop()
if nag(gdt, o) = ∅ then

return o
end
n.push(successors(gdt, o))

end
return null // failed on finding a goal state!

end

It represents the organisation that only has the root role created in the or-
ganisational chart R. The procedure, over and over, checks if the visiting state
is a target state. When the tested state is not a target, the algorithm opens its
successors to visit them later. The search ended when all the goals were assigned,
i.e., nag(gdt, o) is empty. The limit of this search, regarding the maximum depth
of the tree, is G size, in this example it has three levels.

The function to get successors is illustrated in Algorithm 2. It is responsible
for generating all possibilities for assigning a goal to roles. Indeed, as illustrated,
the algorithm tries to place the goal to be assigned on each existing role applying
the supported transformations. The gr(r) function refers to the assigned goals
for the specific role r, the same for the functions pr and sr.

The algorithms for transformations are roughly similar. The parent is even-
tually unknown because joining process may assign multiple goals into a unique
role. For this reason, the algorithm tries to find the parent goal of the sub-goal
to be allocated into the existing roles. Then nag(gdt, o) is almost a copy, just
skipping the current goal. Later the R is copied and also is updated with the just
created role. Finally, this new or modified role is considered a possible successor
state for further searches.

In the previous example, as illustrated in Fig. 5, all the possible solutions
are being shown. However, the algorithm stops after finding the first solution,
which remarks on the importance of ordering. The solutions are sorted by cost

From Goals to Organisations: automated organisation generator for MAS 11

Algorithm 2: successors

Data: List ⟨G,pg, sg⟩ gdt, Organisation o
Result: List ⟨ Organisation ⟩
begin

List suc
foreach Goal g of nag(gdt, o) do

foreach Role r of o.R do
if gr(r) contains pg(g) then

addSubordinate(r, suc, g) // Add as a child role

if sg(g) ∈ sr(r) then
joinASubordinate(r, suc, g) // Join g into *this* role

end

else if pg(g) ∈ gr(pr(r)) and sg(g) ∈ sr(r) then
joinAPair(r, suc, g) // Join goal g into *this* role

end

end

end
return suc

end

functions which are related to the user preferences. For instance, if a more gen-
eralist structure is preferred so “pair roles” creation is costly, and joining pairs
is cheaper. It makes preferable a chart with fewer pairs as possible.

5 Future work

For the next step of our research, the designing process is being split into two
phases: the organisation design and the resource allocation process. With this
separation, it is expected that GoOrg becomes more suitable to deal with asyn-
chronous changes on the system’s resources availability and redesign requests.

On the next step, still on designing process, we will add new inputs such as
predicted workload, necessary resources, performer index, communication topics,
and predicted throughput. The predicted workload can be used to know how many
agents should take the same role or if the same agent can perform more than
one role. The performer index indicates that the same agent must perform some
goals and, contrarily, can tell that two goals cannot be performed by the same
agent, for instance in a process in which something is made and must be verified
by another agent. With communication topics and predicted throughput, the
hierarchy levels and departmentalisation can be set. These data may also allow
enhancing the algorithm to decide when a coordination role can be subtracted,
maintained or even new ones created. Other state-space search algorithm and
cost functions will be experienced for optimisation purpose and to give more
possibilities in terms of structures.

In the sequence, we plan to develop the second process, i.e., resources al-
location. This process will bind resources and roles. The inputs are available

12 Amaral, C.J. and Hübner, J.F.

agents and skills, available artefacts and organisation design preferences. This
allocation process aims to guarantee that the created structure is viable, i.e., can
be well-formed when it runs with the given resources. Finally, the output is an
organisational chart with artefacts allocated and agents assigned to roles.

The allocation process can solve some challenges that do not require a re-
design. To illustrate it, back to PCB Production example, consider that Buy
Components sub-goal also needs Electronics Knowledge skill and the chart has
created different roles for purchasing, they can be called Components Purchaser
and Other Inputs Purchaser. Consider that agent A and agent B play, respec-
tively, the referred roles having all the necessary skills to play both. Consider
now that agent A left the system and agent C has joined it, but this agent has
no Electronics Knowledge skill. The resource allocation process can move agent
B to Components Purchaser role, assigning agent C to Other Inputs Purchaser
role.

It is also expected to make GoOrg suitable to deal with asynchronous changes
on the system’s resources availability and redesign requests. For instance, with
simple changes in the availability of resources, the process can be lighter. How-
ever, with more significant changes, for example, on the gdt, a complete redesign
process may be necessary, a function that can be triggered by the allocation
phase. In this solution, as illustrated in Fig. 6b1, the goals were centralised in
a unique role which is more generalist to achieve more goals with sometimes
different associated skills.

PCB
Assembly

Apply
Paste

Place
components

Soldering
Components

HeatPick and
Place

Print

Buy Inputs

Buy
Components

Buy Other
Inputs

PurchasePurchase

PCB
Production

 Production
Manager

Purchasing
Coordinator

Purchaser

Assembling
Coordinator

Paster
Applicator

Components
Placer

Components
Welder

PCB
Assembly

Apply
Paste

Place
components

Soldering
Components

HeatPick and
Place

Print

Buy Inputs

Buy
Components

Buy Other
Inputs

PurchasePurchase

PCB
Production

Production
ManagerPurchasing

Coordinator

Assembling
Coordinator

Paster
Applicator Components

Placer

Components
Welder

Purchaser

 Production
Manager

Purchasing
Coordinator

Purchaser

Assembling
Coordinator

Paster
Applicator

Components
Placer

Components
Welder

bob

alice

alice

mary

tom

fred

paul

PCB
Assembly

Apply
Paste

Place
components

Soldering
Components

HeatPick and
Place

Print

Buy Inputs

Buy
Components

Buy Other
Inputs

PurchasePurchase

PCB
Production

?

 Production
Manager

Purchasing
Coordinator

Purchaser

Assembling
Coordinator

Paster
Applicator

Components
Placer

Components
Welder

Purchaser

Purchaser

Production
cell supervisor

Production
cell supervisor

Production
cell supervisor

Paster
Applicator

Components
Placer

Components
Welder

Paster
Applicator

Components
Placer

Components
Welder

? ?

 Production
Manager

Purchaser Full Assembler
alice

tom

paul

Assembling department

Purchases department

 Production
Manager

Purchasing
Coordinator

Purchaser

Assembling
Coordinator

Paster
Applicator

Components
Placer

Components
Welder

bob

alice

alice

mary

tom

fred

paul

PCB
Assembly

Apply
Paste

Place
components

Soldering
Components

HeatPick and
Place

Print

Buy Inputs

Buy
Components

Buy Other
Inputs

PurchasePurchase

PCB
Production

 Production
Manager

Purchasing
Coordinator

Purchaser

Assembling
Coordinator

Paster
Applicator

Components
Placer

Components
Welder

PCB
Assembly

Apply
Paste

Place
components

Soldering
Components

HeatPick and
Place

Print

Buy Inputs

Buy
Components

Buy Other
Inputs

PurchasePurchase

PCB
Production

Production
ManagerPurchasing

Coordinator

Assembling
Coordinator

Paster
Applicator Components

Placer

Components
Welder

Purchaser

 Production
Manager

Purchasing
Coordinator

Purchaser

Assembling
Coordinator

Paster
Applicator

Components
Placer

Components
Welder

bob

alice

alice

mary

tom

fred

paul

PCB
Assembly

Apply
Paste

Place
components

Soldering
Components

HeatPick and
Place

Print

Buy Inputs

Buy
Components

Buy Other
Inputs

PurchasePurchase

PCB
Production

 Production
Manager

Purchasing
Coordinator

Purchaser

Assembling
Coordinator

Paster
Applicator

Components
Placer

Components
Welder

PCB
Assembly

Apply
Paste

Place
components

Soldering
Components

HeatPick and
Place

Print

Buy Inputs

Buy
Components

Buy Other
Inputs

PurchasePurchase

PCB
Production

Production
ManagerPurchasing

Coordinator

Assembling
Coordinator

Paster
Applicator Components

Placer

Components
Welder

Purchaser

 Production
Manager

Purchasing
Coordinator

Purchaser

Assembling
Coordinator

Paster
Applicator

Components
Placer

Components
Welder

bob

alice

alice

mary

tom

fred

paul

PCB
Assembly

Apply
Paste

Place
components

Soldering
Components

HeatPick and
Place

Print

Buy Inputs

Buy
Components

Buy Other
Inputs

PurchasePurchase

PCB
Production

 Production
Manager

Purchasing
Coordinator

Purchaser

Assembling
Coordinator

Paster
Applicator

Components
Placer

Components
Welder

PCB
Assembly

Apply
Paste

Place
components

Soldering
Components

HeatPick and
Place

Print

Buy Inputs

Buy
Components

Buy Other
Inputs

PurchasePurchase

PCB
Production

Production
ManagerPurchasing

Coordinator

Assembling
Coordinator

Paster
Applicator Components

Placer

Components
Welder

Purchaser

 Production
Manager

Purchasing
Coordinator

Purchaser

Assembling
Coordinator

Paster
Applicator

Components
Placer

Components
Welder

bob

alice

alice

mary

tom

fred

paul

 Production
Manager

Purchasing
Coordinator

Purchaser

Assembling
Coordinator

Paster
Applicator

Components
Placer

Components
Welder

bob

alice

alice

mary

tom

fred

paul

PCB
Assembly

Apply
Paste

Place
components

Soldering
Components

HeatPick and
Place

Print

Buy Inputs

Buy
Components

Buy Other
Inputs

PurchasePurchase

PCB
Production

?

 Production
Manager

Purchasing
Coordinator

Purchaser

Assembling
Coordinator

Paster
Applicator

Components
Placer

Components
Welder

Purchaser

Purchaser

Production
cell supervisor

Production
cell supervisor

Production
cell supervisor

Paster
Applicator

Components
Placer

Components
Welder

Paster
Applicator

Components
Placer

Components
Welder

? ?

 Production
Manager

Purchaser Full Assembler
alice

tom

paul

Assembling department

Purchases department

 Production
Manager

Purchasing
Coordinator

Purchaser

Assembling
Coordinator

Paster
Applicator

Components
Placer

Components
Welder

bob

alice

alice

mary

tom

fred

paul

PCB
Assembly

Apply
Paste

Place
components

Soldering
Components

HeatPick and
Place

Print

Buy Supplies

Buy
Components

Buy Other
Supplies

PurchasePurchase

PCB
Production

?

 Production
Manager

Purchasing
Coordinator

Purchaser

Assembling
Coordinator

Paster
Applicator

Components
Placer

Components
Welder

Purchaser

Purchaser

Production
cell supervisor

Production
cell supervisor

Production
cell supervisor

Paster
Applicator

Components
Placer

Components
Welder

Paster
Applicator

Components
Placer

Components
Welder

? ?

 Production
Manager

Purchaser Full Assembler
alice

tom

paul

Assembling department

Purchases department

 Production
Manager

Purchasing
Coordinator

Purchaser

Assembling
Coordinator

Paster
Applicator

Components
Placer

Components
Welder

bob

alice

alice

mary

tom

fred

paul

PCB
Assembly

Apply
Paste

Place
components

Soldering
Components

HeatPick and
Place

Print

Buy Supplies

Buy
Components

Buy Other
Supplies

PurchasePurchase

PCB
Production

b)a)

 Production
Manager

Purchasing
Coordinator

Purchaser

Assembling
Coordinator

Paster
Applicator

Components
Placer

Components
Welder

bob

alice

alice

mary

tom

fred

paul

b1)

 Production
Manager

Purchaser

Purchaser

Components
Welder

Components
Placer

Paster
Applicator

tom

mary

fred

paul

alice

bob

Purchaser

Purchaser

Components
Welder

Components
Placer

Paster
Applicator

tom

mary

fred

paul

alice

bob

Components
Placer

b2) b3)

PCB
Assembly

Apply
Paste

Place
components

Soldering
Components

HeatPick and
Place

Print

Buy Inputs

Buy
Components

Buy Other
Inputs

PurchasePurchase

PCB
Production

?

? ?

a)

 Production
Manager

Purchasing
Coordinator

Purchaser

Assembling
Coordinator

Assembler

bob

alice

alice

???

paul

PCB
Assembly

Apply
Paste

Place
components

Soldering
Components

HeatPick and
Place

Print

Buy Supplies

Buy
Components

Buy Other
Supplies

PurchasePurchase

PCB
Production

 Production
Manager

Purchasing
Coordinator

Purchaser

Assembling
Coordinator

Paste
Applicator

bob

alice

alice

mary

paul

Placer &
Welder

tom

a)

b1) b2)

Purchase Print
Pick and Place

Heat

Purchase Print

Pick and Place
Heat

Fig. 6. More generalist organisation chart for the given goals and available agents.

However, the illustration also exemplifies a situation where there is no avail-
able agent with all necessary skills to perform the role Assembler since it is

From Goals to Organisations: automated organisation generator for MAS 13

gathering the skills Print, Pick and Place and Heat. Fig. 6b2 shows a possible
solution assuming that an agent mary is able to perform Print and an agent
tom can perform Pick and Place and Heat. In this case, the more generalist
well-formed organisation is represented by this last chart.

We also expect to create other organisational aspects as outputs, i.e., Organ-
isational Scheme and Organisational Norms. The former refers to sets of goals
allocated to different roles that should be performed by the same agent in a
specific sequence. The latter regards especially to general obligations, such as,
when adopting a role created by the method GoOrg the agent is obligated to
perform the missions associated with the referred role.

Finally, we will evaluate our solution using existing domains [3, 17, 26]. We
will first assess the number of input parameters needed by GoOrg. With these
inputs, we will evaluate the ability of GoOrg to design organisations properly.
We will vary aspects of the simulated domains presenting them as more static or
dynamic, with shorter or longer goals, with more chained or independent goals,
etc. These domains will be used to experiment with different user preference
parameters.

From a literature perspective, we can select an organisational structure by
its features as the potentially better solution for the given problem and scenario.
Besides testing this candidate, other organisational structures will be created for
comparison purposes. It is expected to fulfil all the goals in less time with the best
candidate. The results of the simulations should give us insights to discuss lit-
erature perspectives, the adhesion of our method and simulation with literature
and potentially GoOrg application as a testbed for organisational structures.

Among the assumptions we want to evaluate, we have: how the span of
control affects the effectiveness of the organisation [13] varying the height of the
hierarchy to check the impact on agents communication and coordination [14,
30]. In this sense, we can check whether a few number of levels really can lead
to faster decisions and lower overhead costs [14, 30] and if highly structured
organisations are best for repetitive operations [13].

6 Related Work

In the administration area, there are many studies about organisation design,
including some frameworks that may help companies and other organisations
to design their structures [2, 7]. In multi-agent systems, we usually have man-
ual organisational generators, i.e., approaches that allow a human to design
organisations in a wide variety of structures and other aspects as norms, roles,
relations, organisational goals and ontologies, e.g., Moise+ [18], THOMAS [5],
STEAM [31] and AALADIN [12].

In spite of having many studies about organisation design, there are still many
gaps regarding the full range of disciplines and high complexity of organisations.
Considering only automatic organisation generators, the focus of this research,
there are few studies.

14 Amaral, C.J. and Hübner, J.F.

Automated planning is a research area that has produced many contributions
to MAS design. When developing planners for multiple agents, the organisation
design is an intrinsic outcome. Some examples of planners able to generate organ-
isations are TÆMS [8] which provides a way to quantitatively describe individual
tasks which are performed in shared environments, DOMAP [3] which is a de-
centralised MAS task planning and Sleight’s agent-driven planner [27] using a
decentralised Markov Decision Process Model.

Considering bottom-up approaches So [29] did one of the earlier researches
on Multi-Agent Systems organisation design. This study over the characteri-
sation of different organisation designs, including self-organised ones and the
reconfiguration process for stable organisations. There are several studies over
self-organised swarms which use very computationally limited agents [19], and
there is no complex coordination mechanism among agents [32].

In the class we have positioned our research, we found only a few works:
SADDE [23] and ODML [17], which are algorithms that use as input mathemat-
ical models to predict efforts and create an organisational structure; MaSE-e [10]
which is a method for creating organisation structures extending the engineering
method MaSE; and KB-ORG [25, 26] that takes goals and roles to bind agents
and create coordination levels. Although seminal, we think the methods have
challenges to overcome, especially regarding inputs in which we are proposing a
method to produce roles in a way to make inputs easier to handle.

Table 2 gives an overview of explicit organisation generators we have found4.
We are comparing a few features related to inputs, intrinsic features and outputs.
The first columns refer to inputs. We start checking whether goals are inputs
since it gives an idea of the start point of each approach. The no need roles as
inputs indicates if the generator needs this input. The column Bound Agents are
inputs represents the capability of the generator to receive as inputs a structure
earlier created with bound resources.

The next columns represent features of the generators. The column has quan-
titative analysis describes the capability of the generator the assess the goals
creating structures that take into account quantitative parameters such as goal
expected needed effort to be performed. Organisations are explicit refers to meth-
ods that use explicit organisation representations. Is domain-independent relates
to methods that are suitable for any problem domain.

The next columns are related to the main outputs of the generators. Cre-
ates roles refers to the ability to automatically create roles, combined with roles
are inputs says whether the approach uses or not the concept of roles. The cre-
ates coordination levels column represents the ability of the method to create
coordination roles according to coordination needs automatically. Create viable
organisations represents the ability of the generator to check available resources
to create organisations that can be fulfilled when running. synthesise organi-
sational norms inform whether generators are automatically creating organisa-

4 Legend: (Y)es, (-)No, On (R)oadmap and (*) comments. Table comments: *1 The
output is a nodes tree, not exactly an organisational chart. *2 There is no hierarchy.

From Goals to Organisations: automated organisation generator for MAS 15

Organisation
Generator

G
o
a
ls

a
re

in
p
u
ts

N
o

n
ee

d
ro

le
s

a
s

in
p
u
ts

B
o
u
n
d

A
g
.

a
re

in
p
u
ts

H
a
s

q
u
a
n
ti

ta
ti

v
e

a
n
a
ly

si
s

O
rg

a
n
is

a
ti

o
n
s

a
re

ex
p
li
ci

t

Is
d
o
m

a
in

-i
n
d
ep

en
d
en

t

C
re

a
te

s
R

o
le

s

C
re

a
te

s
C

o
o
rd

.
L

ev
el

s

C
re

a
te

s
v
ia

b
le

o
rg

.

S
y
n
th

es
is

e
O

rg
.

N
o
rm

s

B
in

d
a
g
en

ts
a
n
d

ro
le

s

C
re

a
te

s
d
ep

a
rt

m
en

ts

R
ep

re
se

n
ts

ro
le

s
in

a
ch

a
rt

D
o
es

st
a
te

re
o
rg

a
n
is

a
ti

o
n

D
o
es

st
ru

ct
u
re

re
o
rg

.

GoOrg Y Y Y Y Y Y Y Y Y R Y R Y R R

SADDE Y - - Y Y Y - - Y - Y - - - -

MaSE-e Y - Y Y Y Y - - Y - Y - *2 Y R

KB-ORG Y - - Y Y Y - Y Y - Y - Y - -

ODML Y - - Y Y Y - - Y - Y - *1 - -
Table 2. Comparison among organisation generation methods.

tional norms. Bind agents and roles tells whether the method is doing agents
allocation job or not.

The next columns regard to byproducts of the generators. Creates depart-
ments refers to the specific ability of the generator to create organisational de-
partments automatically. Represents roles in a chart relates to methods that
represent organisations as usual organisational charts.

The following columns are related to the capability of the generators to deal
with reorganisations. Does state reorganisation refers to the ability to move
agents from some responsibility to another without needing to trigger a restruc-
turing process. Does structure reorganisation refers to the ability to create new
structures based on an old one.

Finally, as we agree with many authors that there is no single type of organi-
sation suitable for all situations [16], we also recognise that there is no individual
approach ideal for creating all organisations [6]. In both cases, each offers some
advantages that the others may lack, especially regarding different organisation
generator classes. In the presented comparison, we tried to show an overview of
those organisation generators based on the assumption that explicit organisa-
tional structures can provide advantages on designing open systems.

7 Conclusion

This paper has presented a proposal for an automated generator of explicit or-
ganisations based on goals and annotations as inputs. The current status of
this research shows that it is feasible to draw an organisational chart using as
input organisational goals with some annotations such as necessary skills to per-
form each goal. It is intended to enhance the current version of our method
adding new inputs to bring necessary information to produce useful organisa-

16 Amaral, C.J. and Hübner, J.F.

tional charts, taking advantage of opportunities to join goals on the same roles,
adding or removing coordination levels. According to performance issues, we can
add heuristics to improve the search algorithm.

We have also presented our classification regarding related research of auto-
mated organisation generators: (i) automated organisation design by task plan-
ning ; (ii) self-organisation approaches; and (iii) automated explicit organisation
generators. It shows that different strategies address the challenge of organisa-
tion design. The approaches have advantages and drawbacks being more suitable
according to the system’s purpose and environment conditions. Besides, we think
that each class gives some contribution and a combination of them can lead to
a comprehensive MAS design.

Besides the organisational chart creation itself, an extra outcome of GoOrg is
a proposition of a model that identifies different designing phases done by various
methods which potentially can be used together to design a whole MAS. Indeed,
when splitting GoOrg to fit this model, we could identify that our method is
actuating on two processes: organisation design and resources allocation. The
allocation of resources done before the execution is a guarantee that when run-
ning the created organisational chart can be filled by the available resources, i.e.,
can be a well-formed organisation.

About evaluation criteria, it is intended to apply the model in known domains
testing if it can build suitable structures. These organisations will be simulated in
a variety of conditions and checked if goals were fulfilled. By tuning preferences,
it is expected to create better arrangements for our testing domains. We also
intend to compare the results in terms of time to accomplish the goals between
the best candidate and other organisational structures.

References

1. Amaral, C.J., Hübner, J.F.: Goorg: Automated organisational chart design for
open multi-agent systems. In: De La Prieta, F., González-Briones, A., Pawleski,
P., Calvaresi, D., Del Val, E., Lopes, F., Julian, V., Osaba, E., Sánchez-Iborra, R.
(eds.) PAAMS. pp. 318–321. Springer International Publishing, Cham (2019)

2. Burton, R.M., Obel, B., Desanctis, G.: Organizational design: a step-by-step ap-
proach. Cambridge University Press (2011)

3. Cardoso, R.C., Bordini, R.H.: A modular framework for decentralised multi-agent
planning. In: Proceedings of the 16th Conference on Autonomous Agents and Mul-
tiAgent Systems. pp. 1487–1489. São Paulo, Brazil (2017)

4. Cardoso, R.C., Bordini, R.H.: Decentralised Planning for Multi-Agent Program-
ming Platforms (Aamas), 799–807 (2019)

5. Criado, N., Argente, E., Botti, V.: THOMAS: An agent platform for supporting
normative multi-agent systems. Journal of Logic and Computation 23(2), 309–333
(2013)

6. Daft, R.L.: Organization Theory and Design. South-Western College Pub, Centage
Learning, 10th edn. (2009)

7. De Pinho Rebouças De Oliveira, D.: Estrutura Organizacional: Uma Abordagem
Para Resultados e Competitividade. ATLAS EDITORA (2006)

From Goals to Organisations: automated organisation generator for MAS 17

8. Decker, K.S.: Environment Centered Analysis and Design of Coordination Mecha-
nisms. PhD Thesis, University of Massashusets (May 1995)

9. DeLoach, S.A.: Modeling organizational rules in the multi-agent systems engineer-
ing methodology. In: Cohen, R., Spencer, B. (eds.) Advances in Artificial Intelli-
gence. pp. 1–15. Springer Berlin Heidelberg, Berlin, Heidelberg (2002)

10. DeLoach, S.A., Matson, E.: An Organizational Model for Designing Adaptive Mul-
tiagent Systems. The AAAI-04 Workshop on Agent Organizations: Theory and
Practice (AOTP 2004). pp. 66–73 (2004)

11. Deloach, S.A., Oyenan, W.H., Matson, E.T.: A capabilities-based model for adap-
tive organizations. In: Autonomous Agents and Multi-Agent Systems. vol. 16, pp.
13–56 (2008)

12. Ferber, J., Gutknecht, O.: A meta-model for the analysis and design of organi-
zations in multi-agent systems. Proceedings - International Conference on Multi
Agent Systems, ICMAS 1998 pp. 128–135 (1998)

13. Fink, S., Jenks, R., Willits, R.: Designing and Managing Organizations. Irwin Series
in Financial Planning and Insurance, R.D. Irwin (1983)

14. Galbraith, J.R.: Designing organizations: an executive briefing on strategy, struc-
ture, and process. Jossey-Bass Publishers - San Francisco (1995)

15. Hatch, M.: Organization Theory: Modern, Symbolic, and Postmodern Perspectives.
Oxford University Press (1997)

16. Horling, B., Lesser, V.: A survey of multi-agent organizational paradigms. Knowl-
edge Engineering Review 19(4), 281–316 (2004)

17. Horling, B., Lesser, V.: Using quantitative models to search for appropriate orga-
nizational designs. Autonomous Agents and Multi-Agent Systems 16(2), 95–149
(2008)

18. Hübner, J.F., Sichman, J.S.: Organização de sistemas multiagentes. III Jornada de
MiniCursos de Inteligência Artificial JAIA03 8, 247–296 (2003)

19. Labella, T.H., Dorigo, M., Deneubourg, J.L.: Division of labor in a group of robots
inspired by ants’ foraging behavior. ACM Transactions on Autonomous and Adap-
tive Systems 1(1), 4–25 (2007)

20. Leitão, P., Karnouskos, S., Ribeiro, L., Lee, J., Strasser, T., Colombo, A.W.: Smart
agents in industrial cyber physical systems. Proceedings of the IEEE (2016)

21. Mintzberg, H.: The design school: Reconsidering the basic premisses of strategic
management. Strategic Management Journal 11(May 1989), 171–195 (1990)

22. Pattison, H.E., Corkill, D.D., Lesser, V.R.: Chapter 3 - instantiating descriptions of
organizational structures. In: Huhns, M.N. (ed.) Distributed Artificial Intelligence,
pp. 59 – 96 (1987)

23. Sierra, C., Sabater, J., Augusti, J., Garcia, P.: SADDE: Social agents design driven
by equations. Methodologies and software engineering for agent systems. Kluwer
Academic Publishers pp. 1–24 (2004)

24. Simon, G., Mermet, B., Fournier, D.: Goal decomposition tree: An agent model to
generate a validated agent behaviour. In: Baldoni, M., Endriss, U., Omicini, A.,
Torroni, P. (eds.) Declarative Agent Languages and Technologies III. pp. 124–140.
Springer Berlin Heidelberg, Berlin, Heidelberg (2006)

25. Sims, M., Corkill, D., Lesser, V.: Knowledgeable Automated Organization Design
for Multi-Agent Systems. Challenge pp. 1–42 (2007)

26. Sims, M., Corkill, D., Lesser, V.: Automated organization design for multi-agent
systems. Autonomous Agents and Multi-Agent Systems 16(2) (2008)

27. Sleight, J., Durfee, E.H.: Organizational design principles and techniques for
decision-theoretic agents. In: Proceedings of the 2013 International Conference on

18 Amaral, C.J. and Hübner, J.F.

Autonomous Agents and Multi-agent Systems. pp. 463–470. AAMAS ’13, Interna-
tional Foundation for Autonomous Agents and Multiagent Systems, Richland, SC
(2013)

28. Sleight, J.L., Durfee, E.H., Baveja, S.S., Cohn, A.A.E.M., Lesser, E.V.R.: Agent-
Driven Representations, Algorithms, and Metrics for Automated Organizational
Design (2015)

29. So, Y.P., Durfee, E.H.: Chapter X. Designing Organizations for Computational
Agents (1996)

30. Stoner, J., Freeman, R.: Management. Prentice-Hall (1992)
31. Tambe, M.: Towards Flexible Teamwork. Journal of Artificial Intelligence Research

7, 83–124 (1997)
32. Ye, D., Zhang, M., Vasilakos, A.V.: A Survey of Self-organisation Mechanisms in

Multi-Agent Systems. IEEE Transactions On SMC: Systems 47(3) (2016)

