INSTITUTO FEDERAL DE SANTA CATARINA

ARIANA PEREIRA BARBOZA DA SILVA

ANÁLISE ESPAÇO-TEMPORAL DA EVOLUÇÃO DA VULNERABILIDADE COSTEIRA EM ITAPOÁ/SC.

Uma Perspectiva Hidrogeomorfológica e Climática

Florianópolis - SC

10 de maio de 2023

ARIANA PEREIRA BARBOZA DA SILVA

ANÁLISE ESPAÇO-TEMPORAL DA EVOLUÇÃO DA VULNERABILIDADE COSTEIRA EM ITAPOÁ/SC.

Uma Perspectiva Hidrogeomorfológica e Climática

Dissertação apresentada ao Mestrado Profissional em Clima e Ambiente do Campus Florianópolis do Instituto Federal de Santa Catarina para a obtenção do diploma de Mestre em Clima e Ambiente.

Orientador: Dr. Cássio Aurélio Suski

Florianópolis - SC

10 de maio de 2023

P 180f Silva, Ariana.
Ficha catalográfica para trabalhos acadêmicos / Ariana Pereira Barboza da Silva. - Florianópolis, 2023.
165p.
Dissertação (mestrado) – Instituto Federal de Santa Catarina, Câmpus Florianópolis, Curso de Mestrado em Clima e Ambiente Florianópolis, 2023.
Orientador: Cássio Aurélio Suski
1. Erosão Costeira. 2. Vulnerabilidade Costeira. 3. Sensoriamento Remoto. 4. Modelagem. 5. Mudanças Climáticas.

CDD 001.4

MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA PROGRAMA DE PÓS-GRADUAÇÃO EM CLIMA E AMBIENTE

INSTRUÇÕES A BANCA EXAMINADORA :

- 1. O conceito da avaliação deverá ser expresso como A = Aprovado(a) ou R = Reprovado(a).
- 2. A avaliação é feita logo após o encerramento da exposição oral e argüição do (a) aluno (a).
- Caso haja alguma reformulação sugerida, a Banca Examinadora deverá estabelecer um prazo disponível para o(a) aluno(a) procedê-la, até o limite de 60 dias.
- Após o preenchimento deste formulário de avaliação, o mesmo deverá ser entregue à Secretaria de Pós-Graduação pelo Presidente da Banca Examinadora.

Aluno (a): Ariana Pereira Barboza da Silva

Titulo: ANÁLISE ESPAÇO-TEMPORAL DA EVOLUÇÃO DA VULNERABILIDADE COSTEIRA EM ITAPOÁ/SC - Uma Perspectiva Hidrogeomorfológica e Climática

(X) Aprovado () Reprovado

Dedico esta pesquisa a minha mãe Rita, a minha sobrinha Rafaela, *in memoriam* ao meu tio Pedro, a minha sobrinha Elen e aos professores Dr. Paulo da Cunha Lana e Dr. Carlos Roberto Soares que fizeram parte ou estiveram em meus pensamentos em muitos dias na execução deste trabalho.

AGRADECIMENTOS

Ao Instituto Federal de Santa Catarina, pelo apoio e educação obtida para a execução desta pesquisa.

Ao meu orientador Dr. Cássio Aurélio Suski pela confiança e pelo apoio para a execução e entrega desta pesquisa.

Aos professores do Instituto Federal de Santa Catarina, principalmente aos professores Dr. Mário Quadro, Dr. Adriano Vitor, Dr. Eduardo Werneck e Dr. Sérgio Augusto Bitencourt Petrovcic, pelo apoio e educação obtida para a execução desta pesquisa.

Ao Dr. Guilherme Franz pelo ensinamento da modelagem e pelo apoio para a execução e entrega desta pesquisa.

Ao meu amigo Phelype Oleinik pela ajuda nos processos de modelagem e pelo apoio para a execução e entrega desta pesquisa.

A minha mãe e minha sobrinha Rafaela por serem meus pilares e as minhas irmãs pelo apoio emocional que sempre me forneceram.

A minha sobrinha Elen e ao meu tio Pedro, que estão sempre ao meu lado fornecendo muita sabedoria e um caminho iluminado.

Aos professores Dr. Paulo da Cunha Lana e Dr. Carlos Roberto Soares por terem me ensinado a amar e a como fazer ciência.

Ao meu Deus do Universo e aos meus guias no plano espiritual que permanecem sempre comigo me guiando e me protegendo.

A mim, por todos os processos difíceis que passei nos últimos anos e sempre estive forte na medida do possível para estar aqui e entregar esta pesquisa.

"A criatividade é a ciência se divertindo" (Albert Einstein, 1879-1955)

RESUMO

A vulnerabilidade costeira se apresenta na costa litorânea em função da resposta pela alta sensibilidade do ambiente e devido à complexidade em seus processos hidrodinâmicos e sedimentológicos. Portanto, o ambiente costeiro sofre com as constantes mudanças o que pode levar a erosão costeira. O objetivo geral desta pesquisa é entender os processos hidrodinâmicos e meteorológicos que exercem influência nos processos de erosão existentes nas praias de Itapoá e entender o comportamento da erosão costeira ao longo dos anos de 1985 a 2022. As praias de Itapoá foram divididas em 9 pontos (P01 A P09), de norte a sul, e caracterizados visualmente conforme o padrão de erosão. Através da análise DSAS foi obtida a taxa de alteração ao longo dos anos das praias e identificada a situação da evolução de cada praia. A partir de dados das condicionantes físicas do ambiente foi estabelecida a hidrodinâmica por meio da modelagem. Para os fatores climáticos foram utilizados os dados meteorológicos da EMA-A851 e dados de maré, assim foram analisados dados das Decretações de Desastres da Defesa Civil-SC. De acordo com os resultados foram encontrados 4 pontos de praia com erosão intensa (P03, P06, P07 e P08) com taxas de alteração acima de 1000 m/ano, 4 pontos de estabilidade (P02, P04, P05 e P09) e 1 ponto em acresção (P01). A partir da hidrodinâmica do ambiente para o ano modelado foi identificado a influência das forçantes relacionada a desembocadura da Babitonga e da deriva litorânea, identificando os pontos P04, P08 e P09 com menos força hidrodinâmica e as demais praias recebem força oceânica direta. O padrão de ventos da região no período de 1985 a 2022, demonstrou-se tendência na direção do vento para OSO-ENE e com velocidade média de 1,0 m/s. Foram identificados 15 desastres (1998-2020) em Itapoá e que em 2001, 2003, 2013, 2014 e 2018, eram eventos diretamente relacionados a inundação e erosão costeira. Neste estudo não foi encontrado correlação entre as forçantes maré e vento, no entanto pode ser evidenciado que o vento (tempestades) está relacionado aos eventos que geraram alguma calamidade, assim como não é necessário eventos astronômicos para ocorrer processos de erosão intensa e apenas tempestades (de baixa intensidade) são capazes de gerar avanços significativos na erosão. A presença de sistemas lunares bem desenvolvidos não foi observada, indicando que o sedimento está sendo transportado para fora do sistema e entende que ação da dragagem também pode ser um fator para perda de sedimento ao longo dos anos. Outro fator que contribui para a erosão costeira em Itapoá é a ação antrópica, como a construção de edificações muito próximas à costa, que acabam comprometendo a estabilidade do terreno e o excesso de contenções provindas desde 1996 pode ter contribuído para o não desenvolvimento das praias conforme a sazonalidade somada a falta de vegetação nativa. Com este estudo foram evidenciados que 4 pontos da praia de Itapoá encontram-se completamente vulneráveis a ação da erosão.

Palavras-Chave: Erosão Costeira. Vulnerabilidade Costeira. Sensoriamento Remoto. Modelagem. Mudanças Climáticas.

ABSTRACT

Coastal vulnerability occurs along the coastline due to the high sensitivity of the environment and the complexity of its hydrodynamic and sedimentological processes. Therefore, the coastal environment is constantly changing, which can lead to coastal erosion. The general objective of this research is to understand the hydrodynamic and meteorological processes that influence the existing erosion processes on the beaches of Itapoá and to understand the behavior of coastal erosion from 1985 to 2022. The Itapoá beaches were divided into 9 points (P01 to P09), from north to south, and visually characterized according to the erosion pattern. The DSAS analysis provided the rate of alteration over the years of the beaches and identified the evolution situation of each beach. Based on the physical environmental conditions, the hydrodynamics were established through modeling. For climatic factors, meteorological data from EMA-A851 and tidal data were used, and data from Civil Defense Disaster Declarations in SC were analyzed. According to the results, 4 beach points were found to have intense erosion (P03, P06, P07, and P08) with alteration rates above 1000 m/year, 4 stable points (P02, P04, P05, and P09), and 1 point in accretion (P01). Based on the modeled year's hydrodynamics, the influence of the forces related to the Babitonga estuary and the littoral drift were identified. Points P04, P08, and P09 represent beaches with less hydrodynamic force, while the other beaches receive direct oceanic force. The wind pattern in the region from 1985 to 2022 showed a trend in the direction of OSO-ENE with an average speed of 1.0 m/s. Fifteen disasters (1998-2020) were identified in Itapoá, and in 2001, 2003, 2013, 2014, and 2018, events were directly related to flooding and coastal erosion. No correlation was found between tidal and wind forcing, but it was evidenced that wind (storms) is related to events that generate some calamity. It is not necessary to have astronomical events to occur intense erosion processes, and only low-intensity storms are capable of generating significant advances in erosion. The presence of well-developed lunar systems was not observed, indicating that sediment is being transported out of the system, and it is understood that dredging activities can also be a factor in the loss of sediment over the years. Another factor that contributes to coastal erosion in Itapoá is anthropogenic action, such as the construction of buildings too close to the coast, which compromises the stability of the terrain, and the excess of containment since 1996 may have contributed to the non-development of the beaches according to seasonality, coupled with the lack of native vegetation. This study evidenced that 4 points of Itapoá beach are completely vulnerable to erosion.

Keywords: Coastal Erosion. Coastal Vulnerability. Remote Sensing. Modeling. Climate Changes.

LISTA DE FIGURAS

Figura 1 - Caracterização e definição do perfil praial.	5
Figura 2 - Fotos antigas da evolução da erosão em Itapoá-SC no setor Central	8
Figura 3 - Comparação com a evolução da linha de costas dos anos de 1957, 1978 e 1995	9
Figura 4 - Município de Itapoá-SC e divisão dos 9 pontos de praia.	.16
Figura 5 - Método de Balizamento descrito por Kowmann (1970)	.17
Figura 6 - Divisão dos 6 pontos de praia.	.17
Figura 7 – Perfil (Pf01) de praia entre agosto de 2020 e dezembro de 2021.	.29
Figura 8 - Perfil (Pf02) de praia entre agosto de 2020 e dezembro de 2021	.29
Figura 9 - Perfil (Pf03) de praia entre agosto de 2020 e dezembro de 2021	.30
Figura 10 - Perfil (Pf04) de praia entre agosto de 2020 e dezembro de 2021	.30
Figura 11 - Perfil (Pf05) de praia entre agosto de 2020 e dezembro de 2021	.31
Figura 12 - Perfil (Pf06) de praia entre agosto de 2020 e dezembro de 2021	.31
Figura 13 – Características do perfil praial em condições de tempo bom e tempestade	32
Figura 14 - Resultado Frequência dos Ventos no ano de 2021	34
Figura 15 - Classes de Frequência de Distribuição do Ventos no período de 2021	34
Figura 16 - Velocidade em um dia de Verão	35
Figura 17 - Variação de Nível em um dia de Verão	36
Figura 18 - Velocidade em um dia de Outono	36
Figura 19 - Variação de Nível em um dia de Outono	37
Figura 20 - Velocidade em um dia de Inverno	37
Figura 21 - Variação de Nível em um dia de Inverno	38
Figura 22 - Velocidade em um dia de Primavera	38
Figura 23 - Variação de Nível em um dia de Primavera	39
Figura 24 - Imagens do Satélite LandSat com corte específico para Análise de Variação	da
Linha de Costa de Itanoá ao longo dos anos de 1985, 1995, 2005, 2015 e 2022	40
Figura 25 - Resultado dos 284 Transectos obtidos a partir da análise da Taxa de Variação	da
Linha de Costa	.41
Figura 26 - Resultado dos 43 transectos obtidos do PONTO 01	.43
Figura 27 - Resultado dos 42 transectos obtidos do PONTO 02	.44
Figura 28 - Resultado dos 20 transectos obtidos do PONTO 03 e 12 transectos obtidos	no
PONTO 04	.44
Figura 29 - Resultado dos 27 transectos obtidos do PONTO 05	.45
Figura 30 - Resultado dos 42 transectos obtidos do PONTO 06	.45
Figura 31 - Resultado dos 37 transectos obtidos do PONTO 07. 18 transectos obtidos	do
PONTO 08 e 43 transectos obtidos do PONTO 09	46
Figura 32 - Locais de Desembocadura	47
Figura 33 - Transectos Ponto 02	47
Figura 34 - Transectos Ponto 04.	.48
Figura 35 - Transectos Ponto 05.	.48
Figura 36 - Transectos Ponto 06	.49
Figura 37 - Transectos Ponto 07 e 08	.49
Figura 38 - Gráfico de taxa de variação ao longo dos anos no Ponto 01.	.50
Figura 39 - Gráfico de taxa de variação ao longo dos anos no Ponto 01	.50
Figura 40 - Gráficos de taxa de variação do Ponto 02 ao longo dos anos	.51
Figura 41 - Gráficos de taxa de variação do Ponto 02 ao longo dos anos	.51
Figura 42 - Gráficos de taxa de variação do Ponto 03 ao longo dos anos	.51
Figura 43 - Gráficos de taxa de variação do Ponto 03 ao longo dos anos	.52
Figura 44 - Gráficos de taxa de variação do Ponto 03 ao longo dos anos	.52

Figura 45 - Gráficos de taxa de variação do Ponto 04 ao longo dos anos	52
Figura 46 - Gráficos de taxa de variação do Ponto 04 ao longo dos anos	53
Figura 47 - Gráficos de taxa de variação do Ponto 05 ao longo dos anos	53
Figura 48 - Gráficos de taxa de variação do Ponto 05 ao longo dos anos	53
Figura 49 - Gráficos de taxa de variação do Ponto 05 ao longo dos anos	54
Figura 50 - Gráficos de taxa de variação do Ponto 06 ao longo dos anos	54
Figura 51 - Gráficos de taxa de variação do Ponto 06 ao longo dos anos	54
Figura 52 - Gráficos de taxa de variação do Ponto 06 ao longo dos anos	55
Figura 53 - Gráficos de taxa de variação do Ponto 06 ao longo dos anos	55
Figura 54 - Gráficos de taxa de variação do Ponto 07 ao longo dos anos	55
Figura 55 - Gráficos de taxa de variação do Ponto 07 ao longo dos anos	56
Figura 56 - Gráficos de taxa de variação do Ponto 07 ao longo dos anos	56
Figura 57- Gráficos de taxa de variação do Ponto 08 ao longo dos anos	56
Figura 58 - Gráficos de taxa de variação do Ponto 08 ao longo dos anos	57
Figura 59 - Gráficos de taxa de variação do Ponto 08 ao longo dos anos	57
Figura 60 - Gráficos de taxa de variação do Ponto 08 ao longo dos anos	57
Figura 61 - Gráficos de taxa de variação do Ponto 09 ao longo dos anos	58
Figura 62 - Gráficos de taxa de variação do Ponto 09 ao longo dos anos	58
Figura 63 - Gráficos de taxa de variação do Ponto 09 ao longo dos anos	58
Figura 64 - Análise de Frequência dos Ventos no Período de 2007 a 2022	59
Figura 65 - Classes de Frequência de Distribuição dos Ventos no Período de 2007 a 2022	60
Figura 66 - Padrão de Frequência dos Ventos do Período de 2014 a 2022	61
Figura 67 - Classes de Frequência de Distribuição dos Ventos no Período de 2014 a 2022	
Figura 68 - Mapa dos munícipios analisados no estado de Santa Catarina e as Decretaçõ	ies de
Desastres para os municípios nordeste de Santa Catarina entre os anos de 1998 a 2020	63
Figura 69 - Tipo de desastres que aconteceram em Itapoá entre 1998 e 2020	63
Figura 70 - Quantidade de desastres que aconteceram em Itapoá entre 1998 e 2020 por an	no.64
Figura 71 - Quantidade de desastres que aconteceram na Região Nordeste representada	entre
1998 e	64
Figura 72 - Padrão de Ventos.	66
Figura 73 - Rajada de Vento 2008 e 2009.	69
Figura 74 - Rajada de Vento 2010 e 2011	70
Figura 75 - Rajada de Vento 2013 e 2018.	71
Figura 76 - Rajada de Vento 2020	72

LISTA DE QUADROS

Quadro 1 - Indicadores e variáveis utilizadas para classificação do estado erosional da	ıs praias.
Quadro 2 - Divisão e caracterização das praias em Itapoá-SC	
Quadro 3 - Resultado da caracterização do estado erosional dos 9 pontos de praia	
Quadro 4 - Mínimo, máximo e médias verdadeiras das taxas de variação para cada p	onto em
metros.	
Quadro 5 - Resumo dos resultados e influência dos fatores externos	85

LISTA DE ABREVIATURAS E SIGLAS

CHM - Centro de Hidrografia Marinha

CIRAM/EPAGRI - Centro de Informações de Recursos Ambientais e Hidrometeorologia de Santa Catarina

DSAS - Digital Shoreline Analysis System

EMA - Estação Meteorológica Automática

FURG - Universidade Federal do Rio Grande

IBGE - Instituto Brasileiro de Geografia e Estatística

IFSC - Instituto Federal de Santa Catarina

INMET - Instituto Nacional de Meteorologia

INPE - Instituto Nacional de Pesquisas Espaciais

IO - USP - Instituto Oceanográfico da Universidade de São Paulo

IPCC - Painel Intergovernamental sobre Mudanças Climáticas

OMM – Organização Meteorológica Mundial

RIMPEX - Rede Integrada de Monitoramento e Previsão de Eventos Extremos na Região Sul

UFPR - Universidade Federal de Santa Catarina

VALE - Companhia Mineradora Vale

SUMÁRIO

1 Introdução	1
1.1 Justificativa	2
1.2 Objetivos	2
1.2.1 Objetivo Geral	2
1.2.2 Objetivos Específicos	3
2 Revisão Bibliográfica	3
2.1 Erosão Costeira no Ambiente Praial	3
2.1.1 Sedimentação no ambiente praial	4
2.1.2 Vulnerabilidade Costeira	6
2.2 Histórico de Erosão em Itapoá - SC	7
2.3 O Estudo da Erosão Costeira	10
2.3.1 Utilização da Modelagem	12
2.4 As Mudanças Climáticas e a Erosão Costeira	13
3 Metodologia	15
3.1 Área de estudo	15
3.2 Caracterização Perfil Praial	17
3.2.1 Perfis Topográficos	17
3.3 Índice de Vulnerabilidade Costeira	18
3.4 Simulação Hidrodinâmica pela Modelagem MOHID	19
3.4.1 Validação do Modelo	19
3.5 Série Temporal da Linha de Costa	20
3.6 Mudanças Climáticas	23
3.6.1 Decretações de Desastres	23
3.6.2 Marés	23
3.6.3 Ventos	24
3.6.4 Maré e Vento	24
4 Resultados	26
4.1 Caracterização das Praias	26
4.1.1 Topografia da Praias	27
4.2 Vulnerabilidade Costeira	32

4.3 Balanço Hidrodinâmico	33
4.4 Mudanças na Linha de Costa	40
4.5 Extremos Climáticos	59
4.5.1 Padrão de Ventos	59
4.5.2 Correlação do Vento e Maré	60
4.5.3 Decretações de Desastres	62
4.5.3.1 Padrão de Ventos e associação as Decretações de Itapoá	64
5 Discussão	73
6 Considerações Finais	87
7 Produtos Tecnológicos	89
Referências	98
ANEXO 1 - FOTOS PONTO 01	108
ANEXO 2 - FOTOS PONTO 02	109
ANEXO 3 - FOTOS PONTO 03	110
ANEXO 4 - FOTOS PONTO 04	112
ANEXO 5 - FOTOS PONTO 05	113
ANEXO 6 - FOTOS PONTO 06	114
ANEXO 7 - FOTOS PONTO 07	117
ANEXO 8 - FOTOS PONTO 08	119
ANEXO 9 - FOTOS PONTO 09	120
ANEXO 10 - MARÉGRAFO DA ILHA DA PAZ	121
ANEXO 11 - MARÉGRAFO DE ITAPOÁ	122
ANEXO 12 - MARÉGRAFO DE GUARATUBA	123
ANEXO 13 - IMAGEM SÁTELITE 1984	124
ANEXO 14 - IMAGEM SÁTELITE 1985	125
ANEXO 15 - IMAGEM SÁTELITE 1986	126
ANEXO 16 - IMAGEM SÁTELITE 1987	127
ANEXO 17 - IMAGEM SÁTELITE 1988	128
ANEXO 18 - IMAGEM SÁTELITE 1989	129
ANEXO 19 - IMAGEM SÁTELITE 1990	130
ANEXO 20 - IMAGEM SÁTELITE 1991	131
ANEXO 21 - IMAGEM SÁTELITE 1992	132
ANEXO 22 - IMAGEM SÁTELITE 1993	133
ANEXO 23 - IMAGEM SÁTELITE 1994	134
ANEXO 24 - IMAGEM SÁTELITE 1995	135
ANEXO 25 - IMAGEM SÁTELITE 1996	136
ANEXO 26 - IMAGEM SÁTELITE 1997	137

ANEXO 27 - IMAGEM SÁTELITE 1998	138
ANEXO 28 - IMAGEM SÁTELITE 1999	139
ANEXO 29 - IMAGEM SÁTELITE 2000	140
ANEXO 30 - IMAGEM SÁTELITE 2001	141
ANEXO 31 - IMAGEM SÁTELITE 2002	142
ANEXO 32 - IMAGEM SÁTELITE 2003	143
ANEXO 33 - IMAGEM SÁTELITE 2004	144
ANEXO 34 - IMAGEM SÁTELITE 2005	145
ANEXO 35 - IMAGEM SÁTELITE 2006	146
ANEXO 36 - IMAGEM SÁTELITE 2007	147
ANEXO 37 - IMAGEM SÁTELITE 2008	148
ANEXO 38 - IMAGEM SÁTELITE 2009	149
ANEXO 39 - IMAGEM SÁTELITE 2010	150
ANEXO 40 - IMAGEM SÁTELITE 2011	151
ANEXO 41 - IMAGEM SÁTELITE 2012	152
ANEXO 42 - IMAGEM SÁTELITE 2013	153
ANEXO 43 - IMAGEM SÁTELITE 2014	154
ANEXO 44 - IMAGEM SÁTELITE 2015	155
ANEXO 45 - IMAGEM SÁTELITE 2016	156
ANEXO 46 - IMAGEM SÁTELITE 2017	157
ANEXO 47 - IMAGEM SÁTELITE 2018	158
ANEXO 48 - IMAGEM SÁTELITE 2019	159
ANEXO 49 - IMAGEM SÁTELITE 2020	160
ANEXO 50 - IMAGEM SÁTELITE 2022	161
ANEXO 51 - RESULTADO TRANSECTOS PONTO 01 a PONTO 09	162
ANEXO 52 - RESULTADO DA ANÁLISE DSAS PONTO 01	175
ANEXO 53 - RESULTADO DA ANÁLISE DSAS PONTO 02	176
ANEXO 54 - RESULTADO DA ANÁLISE DSAS PONTO 03	178
ANEXO 55 - RESULTADO DA ANÁLISE DSAS PONTO 04	179
ANEXO 56 - RESULTADO DA ANÁLISE DSAS PONTO 05	180
ANEXO 57 - RESULTADO DA ANÁLISE DSAS PONTO 06	181
ANEXO 58 - RESULTADO DA ANÁLISE DSAS PONTO 07	183
ANEXO 59 - RESULTADO DA ANÁLISE DSAS PONTO 08	185
ANEXO 60 - RESULTADO DA ANÁLISE DSAS PONTO 09	186
ANEXO 61 - DESASTRES OCORRIDOS NO PERÍODO DE 1998 A 2020	188

1 INTRODUÇÃO

A vulnerabilidade costeira se apresenta na costa litorânea em função da resposta pela alta sensibilidade do ambiente e devido à complexidade em seus processos hidrodinâmicos e sedimentológicos. Quando eventos de alta energia e/ou pelo avanço do nível relativo do mar, ou pelos eventos de maré astronômica e/ou meteorológica incidem sobre o sistema praial, ou até mesmo a junção de um ou mais destes processos, a linha de costa fica extremamente vulnerável, portanto, o ambiente costeiro sofre mudanças em seu perfil em virtude desta vulnerabilidade que o sistema enfrenta com as constantes mudanças (KLEIN e NICHOLLS, 1999).

A localização da faixa litorânea tem grande importância estratégica na sociedade, principalmente pelo transporte e obtenção de alimentos, mas também como base dos fluxos de circulação oceânica, como lugar de lazer, turismo, de valiosos recursos naturais ou ainda como suporte aos ecossistemas de alta relevância ambiental (MARENZI, 2004). Segundo Alexandrakis *et al*, (2015), às três principais características do impacto da erosão costeira é a perda de área com valor econômico significativo, a destruição do sistema de defesas naturais (como as dunas) e o comprometimento dos sistemas de proteção costeira artificiais (restinga), aumentando os riscos de inundação.

A erosão costeira é considerada como risco costeiro de grande relevância, devido a densidade populacional na costa ser muito grande, comparada as outras regiões e pela representatividade econômica no ambiente litorâneo. Todavia, quando a população se instala na região costeira, este ambiente sofre com a alteração da sua dinâmica natural, ocasionando diversos problemas (BIRD, 1985; MUEHE, 2006). Apesar dos riscos que a erosão costeira provoca, esse processo é um resultado natural da dinâmica hidrogeomorfológica das praias arenosas (GRIGGS, 1996).

Com os panoramas globais de aumento do nível médio relativo do mar, a erosão costeira se torna um emergente e preocupante risco, pois como já descrito a população presente na costa é maior comparada com outras regiões. Pode-se dizer que se trata de um problema público que somente tem sido freado com a construção de contenções, como por exemplo, molhes, espigões, enrocamentos rochosos, entre outros. No entanto, essas contenções, além de modificar o perfil praial, podem ocasionar outros diversos impactos e, principalmente, não resolver o problema e sim, piorá-los (GRACIA *et al.*, 2018).

Segundo as estimativas do Painel Internacional de Mudanças Climáticas apontam que a elevação do nível do mar poder chegar a taxas de 0,13 a 0,50 mm/ano até 2100 (IPCC, 2021) e pela Organização Meteorológica Mundial (OMM, 2022) o aumento do nível do mar para a última década foi de 4,5 cm e aumento da temperatura do planeta de 1,1°C. Como consequência desses acontecimentos, espera-se que os processos de erosão costeira sejam intensificados (BRUUN, 1962).

Em Santa Catarina, segundo Muehe (2006) o maior responsável pela ocorrência da erosão costeira está fortemente ligado a presença de tempestades, que geralmente estão associadas a ciclones extratropicais no sul do Brasil. Os fenômenos climáticos no estado são monitorados através da identificação de eventos extremos, algo de extrema importância para se aliar com estudos hidrodinâmicos e geomorfológicos específicos de cada região, levando em conta que cada região tem sua geomorfologia e padrões únicos de circulação e, desta forma, pode-se obter padrões erosionais, para definir um plano de contenção com maior eficiência e menor degradação do perfil praial.

1.1 Justificativa

A erosão costeira é um fenômeno que causa um grande impacto no Brasil e no mundo, especialmente em zonas costeiras que são ambientes economicamente ativos e densamente povoados. Normalmente, os estudos sobre a erosão costeira são baseados em análises de vulnerabilidade a partir de modelos de complexidade reduzida e medições e/ou acompanhamento do avanço *in situ*. No entanto, o estudo da erosão costeira no Brasil ainda é limitado, mesmo com a extensão significativa da linha costeira do país. Neste estudo, com o uso da ferramenta DSAS para entender a variação da linha de costa aos longos dos anos e a junção de outras análises para os entendimentos dos processos existentes, torna-se possível obter resultados mais significativos para o tema. É importante destacar que a busca pelo histórico da erosão e a demonstração dos acontecimentos têm sido desafiadores, mas também fundamentais para estudos e diagnósticos futuros.

1.2 Objetivos

1.2.1 Objetivo Geral

O objetivo geral desta pesquisa é entender os processos hidrodinâmicos e meteorológicos que exercem influência nos processos de erosão existentes nas praias de Itapoá e entender o comportamento da erosão costeira ao longo dos anos de 1985 a 2022 com a finalidade de determinar as causas a partir da evolução histórica desses processos.

1.2.2 Objetivos Específicos

- Identificar e classificar o estado erosional de cada ponto de praia, com a finalidade de entender os processos existentes;
- 2. Classificar a vulnerabilidade costeira das praias;
- Levantar os processos atuais por meio da modelagem numérica a fim de entender a hidrodinâmica e, consequentemente, os processos sedimentares;
- Compreender o comportamento da linha de costa ao longo dos anos de 1985 a 2022, através da taxa de variação;
- 5. Identificar os eventos climáticos de grande intensidade que podem ser responsáveis pelo avanço da erosão ao longo deste período e compará-los.

2 REVISÃO BIBLIOGRÁFICA

2.1 Erosão Costeira no ambiente praial

Segundo Komar (1983) a erosão costeira é resultado da complexa interação das ondas, do nível do mar, correntes costeiras de "deriva litorânea" e do aporte sedimentar de cada região. Bem como, segundo Pilkey (2009) e Muehe (2011) a erosão costeira pode ser considerada um processo natural e pode ser entendida como a mudança no perfil praial, resultante na transgressão na linha de costa.

Em geral, diversos estudos (ALBINO *et al.*, 2004; ALMEIDA *et al.* 2004; ANGULO *et al.*, 2004; ARAÚJO *et al.*, 2004; CALLIARI e SPERANSKI, 2004; FREIRE, 2004; TESSLER *et al.*, 2004; VITAL, 2004) relatam que, em média, 40% da acresção ocorre no ambiente praial, mesmo assim diversas cidades litorâneas sofrem com os impactos da erosão. As zonas costeiras estão entre os ambientes com maior densidade demográfica no mundo, contendo mais de 60 % da população situada em regiões com até 60 km da costa (AUGUSTINUS, 2009; NICHOLLS, 1995; BIRD, 1985 e 1981). No Brasil, segundo Martinez *et al.* (2007), 48,6% da população vive na zona costeira. Já no estado de Santa Catarina, segundo Polette *et al.* (1995), aproximadamente 68% da população vive na região costeira.

De acordo com Muehe (2011), a erosão costeira é um problema socioambiental relativamente recente, impulsionado pelo aumento populacional na região costeira e pelo constante crescimento urbano, com a construção de residências, ruas e acessos à praia.

No entanto, essas construções, em sua maioria, ignoram os processos hidrodinâmicos que moldam o perfil praial ao longo da linha de costa, resultando em diversos problemas socioambientais, especialmente quando combinados com eventos climáticos extremos

A erosão costeira é um fenômeno presente não só no Brasil, mas em todo o mundo. Segundo Bird (1985), entre 70% e 80% das regiões costeiras do mundo sofrem a retrogradarão (recuo), por perda de areia paras as dunas, para devolução da própria plataforma continental ou para a corrente de deriva litorânea (BIRD, 1985 e 1981; PILKEY *et al.*, 2009).

2.1.1 Sedimentação no ambiente praial

O ambiente costeiro é altamente complexo e sensível, decorrente da dinâmica entre o oceano, o continente e a atmosfera. Devido a esta dinâmica, o ambiente costeiro está sempre em processo de mudanças, essas causadas por processos naturais comuns, resultantes do padrão de ventos, corrente e ação das ondas. No entanto, as mudanças mais drásticas estão relacionadas a eventos meteorológicos, como por exemplo, tempestades, ciclones extratropicais, entre outros (FRENCH, 2001; GODSCHALK *et al.*, 2000; MUEHE, 2011). As ondas, correntes e maré movem o sedimento na antepraia superior e zona intermarés de acordo com a subida e descida do nível do mar. Em consequência dessas forçantes hidrodinâmicas ocorre as mudanças constantes no perfil praial. Os sedimentos na praia recebem materiais mais finos e mais grossos e devido ao balanço hidrodinâmico, esses grãos ficam dispostos em vários padrões e por feições menores, como cristas, terraços e cúspides (HARDISTY, 1990). Portanto, os processos que ocorrem na antepraia desenham a morfologia da praia (KOMAR, 1976). As correntes de deriva litorânea e as ondas geradas pelos ventos são dois dos processos naturais mais importantes que afetam o ambiente praial (CALLIARI *et al.*, 2003; DAVIDSON-ARNOTT, 2010). Segundo Bird (2008) a definição do perfil praial é estabelecida entre o limite da linha de maré baixa e o limite superior da ação das ondas, em geral da base da falésia, das dunas ou da vegetação de restinga permanente, o qual a face da praia representa o setor que pode estar emerso ou submerso, conforme a ação das marés. No setor da antepraia superior, situa-se a região da zona de surfe e de espraiamento, área que pode ser alterada conforme as mudanças hidrodinâmicas (CALLIARI *et al.*, 2003). O início da zona de arrebentação faz o limite com a região de costa a fora (BIRD, 2008; CALLIARI *et al.*, 2003; DAVIDSON-ARNOTT, 2010; GARRISON, 2012; KOMAR, 1976). Os setores e classificação das praias pode ser verificado na figura 1.

Fonte: Garrison, 2012.

De acordo com Bird (2008), os tipos de quebra da onda geradas pelo vento podem ser definidas pelas ondas construtivas (deslizante, colapsante e ascendente) e destrutivas (mergulhante). As ondas construtivas levam os sedimentos para a praia, através de forte fluxo em diversas direções à praia, devido ao espraiamento (*swash*) daquela praia quanto maior a distância em comprimento, maior o espraiamento, com isso, o retorno desse sedimento é mais suave (*backwash*). Já as ondas destrutivas, produzem pequeno espraiamento e um vigoroso movimento de retorno, erodindo a face de praia (BIRD, 2008; DAVIDSON-ARNOTT, 2010).

As praias arenosas são definidas por ondas que arrebentam próximo a costa possuem maior facilidade em retirar o material depositado na face da praia e devolver a plataforma, assim como as ondas geradas pelas tempestades, as quais aumentam as amplitudes das ondas, tornando-as capaz de carregar mais sedimento para fora do perfil, tanto para dentro (pós praia), quando para fora dele (zona mais afora). As ondas de tempestades também são capazes de formar bernas e escarpas expostas na região da face e dos pós praia. As correntes também influenciam diretamente na deposição e acresção sedimentar, principalmente, em sua direção. As correntes podem ser geradas de diversos modos e terem diversas origens, sendo as mais usuais as correntes de retorno e as correntes geradas por ondas, as correntes de maré, as correntes oceânicas, correntes geradas pelo vento e correntes fluviais. A principal corrente que influencia diretamente a erosão costeira no ambiente litorâneo é a corrente de deriva litorânea que é caracterizada por correntes geradas por ondas que chegam longitudinais à costa. Assim como, outro ponto muito importante no ambiente litorâneo são os aportes sedimentares provindos do próprio continente, que são transportados e chegam na margem através de rios ou estuários pelas desembocaduras (BIRD, 2008).

Segundo Calliari *et al.* (2003) e Carter (1991) a disposição e o tipo dos grãos dispostos no ambiente praial são importantes para a definição da erosão ou acresção. Os grãos são transportados pelas ondas ou pelo vento de acordo com seu tamanho, tipo e peso, moldando-se conforme o processo de transporte e dependendo da energia hidrodinâmica para serem movidos. Grãos maiores e mais pesados não podem ser transportados pelo vento e requerem uma força hidrodinâmica mais forte.

2.1.2 Vulnerabilidade Costeira

De acordo com Andrade *et al.*, (2019) e Tominaga *et al.*, (2018), a definição para vulnerabilidade pode ser entendida como o conjunto de processos e condições resultantes de fatores físicos, sociais, econômicos e ambientais que estão associados aos processos existentes dentro de uma comunidade. Tais elementos podem trazer riscos econômicos, sociais, políticos, técnicos, culturais, educacionais e institucionais para determinada população.

Os autores Bevacqua *et al.*, (2018) consideram que realizar um modelo aplicado à vulnerabilidade dos ambientes costeiros é algo dificultado pela falta de dados observacionais. A vulnerabilidade costeira implica o grau de exposição e do risco em potencial causado pela perda ou destruição do espaço físico da linha de costa e da zona

costeira. Os autores ressalvam que o conceito de vulnerabilidade costeira, quando aplicado de forma socioambiental, resulta em maior detalhamento da distribuição espacial da vulnerabilidade, o que permite a projeção de estratégias de gestão costeira mais eficientes.

2.2 Histórico de Erosão em Itapoá - SC

Em Santa Catarina, os processos erosivos na faixa litorânea são evidentes e vários danos são retratados todos os anos em telejornais. Segundo Rudorff e Bonetti (2010) e Angulo *et al.*, (2004), os maiores danos são, principalmente, agravados quando associados a ocorrência de marés de sizígia e/ou ciclones extratropicais.

De acordo com os diversos relatórios de Estudo de Impacto Ambiental (Itapoá Saneamento – EIA/RIMA, 2015 e 2020; Regularização Fundiária da Glebas- EIA/RIMA, 2015; Porto de Itapoá – EIA/RIMA, 2013), o Município de Itapoá tem enfrentado graves problemas de erosão costeira nos últimos anos, resultando na deterioração e destruição de propriedades e pavimentações, além da descaracterização do perfil praial. Desde 1996, o laboratório Lacost/UFPR vem estudando o caso de erosão em Itapoá, utilizando dados desde 1957, e o monitoramento da região costeira próxima a Itapoá acontece desde 1970. O laudo técnico de 2002 (ÂNGULO *et al.*, 2002) dividiu as praias em duas categorias com base na geologia: "oceânicas" e "influenciadas por desembocadura", e delimitou três setores, definidos como Norte, Central e Sul, após seis anos de estudos da costa de Itapoá. Setor Norte – localizado entre a desembocadura do rio Saí-Guaçu e Saí-Mirim. Setor Central – localizado entre a desembocadura do rio Saí-Mirim e o Córrego das Palmeiras. Setor Sul – localizado entre o Córrego das Palmeiras e o balneário Figueira do Pontal.

O setor norte foi caracterizado pela migração da desembocadura do rio Saí-Mirim para o norte. Em alguns períodos do ano, as duas desembocaduras dos rios se encontram quando a descarga do rio está mais forte, o que leva à quebra do esporão formado na região. No setor Central, onde as praias oceânicas estão localizadas, o monitoramento realizado entre 1996 a 2002 indicou recuo médio da linha de costa de 10,91 m no período (1,78 m/ano). Também foi verificado déficit médio de 15,16 m³ de areia por metro linear de praia nesta região. A região central está caracterizada com aproximadamente 12,4 km de praia, o que totaliza um déficit de areia no período em torno de 200.000 m³ ao longo da costa, o que corresponde a uma perda de 30.600 m³ de areia por ano.

Figura 2 - Fotos antigas da evolução da erosão em Itapoá-SC no setor Central.

Fonte: LASCOST/ UFPR, 2002.

O setor Sul é a região diretamente afetada pela desembocadura da baía da Babitonga e do delta de maré vazante do Córrego da Palmeiras. Quando comparadas às fotografias aéreas de 1957 e 1978 verificou-se que próximo ao Pontal da Figueira a linha de costa se deslocou em direção ao mar em torno de 200 m, o qual resultou num acréscimo de área emersa de aproximadamente 15 ha. Entre 1978 e 1995 verificou-se intensa erosão, principalmente ao norte do pontal, onde a linha de costa recuou cerca de 250 m, resultando numa perda de área em torno de 38 ha (Fig. 2). Neste setor, entre 1996 e 2002 o recuo médio da linha de costa apresentou 21,96 m (3,58 m/ano). Portanto, com o comprimento deste setor de 3,6 km, estima-se que a perda de areia foi de aproximadamente 400.000 m³ no período (67.700 m³/ano), como mostra na figura 3 (ÂNGULO *et al.*, 2002).

Figura 3 - Comparação com a evolução da linha de costas dos anos de 1957, 1978 e 1995.

Fonte: LACOST/ UFPR, 2002.

No relatório de Laudo Técnico (ÂNGULO *et al.*, 2002) foram levantadas algumas hipóteses do avanço da erosão costeira em Itapoá, como as praias do setor sul são fortemente afetadas pela desembocadura da Baía da Babitonga pelo delta de maré vazante que se forma, ocasionando diretamente mudanças nos perfis morfológicos. Em 1997 e 1998, a região sofreu com intenso processo na elevação da amplitude das ondas, o qual foi ocasionado pelo fenômeno El Niño na região, no entanto este relatório também evidencia que não ocorreu o balanço sedimentar em outros períodos e que o déficit sedimentar e a erosão costeira foram intensificadas neste período e continuou em proporções menores nos anos subsequentes. A erosão também foi evidenciada nos anos seguintes nas praias do setor Central. Foi constatado no presente laudo que as perdas significativas do volume praial não podem ser explicadas apenas pelas variações naturais decorrentes das mudanças na morfologia do delta ou provocadas por fenômenos tipo El Niño/La Niña. A principal hipótese levantada foi que os processos de dragagens no canal da Baía da Babitonga estão afetando diretamente o aporte sedimentar da região, pois os

valores de déficit sedimentar são muito próximos aos volumes dragados para o mesmo ano.

Em 2014, o Departamento de Gestão Territorial – DEGET, através do Serviço Geológico do Brasil – CPRM, criou o Ação Emergencial para Delimitação de Áreas em Alto e Muito Alto Risco a Enchentes, Inundações e Movimentos de Massa para Itapoá – SC. Os dados resultantes deste trabalho emergencial são disponibilizados às defesas civis de cada município e os dados finais irão alimentar o banco nacional de dados do CEMADEN (Centro de Monitoramento e Alertas de Desastres Naturais). Neste relatório (MINISTÉRIO DE MINAS E ENERGIA, 2014), foram identificados dois setores de alto risco de inundação desencadeados por processos sazonais. Historicamente, os maiores eventos de inundação ocorreram nos anos de 1994 e 2008 e os processos sempre foram constantes e intensificados em alguns momentos. Os locais mais afetados pela erosão são os balneários Brasília, Itapoá (Centro), Princesa do Mar e Uirapuru. Em outubro de 2013, algumas moradias foram atingidas e pontos da orla regrediram em até 7 metros. Estes documentos também ressaltam que a ocupação desordenada em Itapoá é responsável pelos problemas de erosão na cidade (MINISTÉRIO DE MINAS E ENERGIA, 2014).

Atualmente em Itapoá acontecem os estudos e processos administrativos (licenciamento ambiental) para a engorda de praia, cuja finalidade é promover a reestruturação do perfil praial e do turismo na região (PREFEITURA DE ITAPOÁ, 2022). Em 2022, o Ibama liberou o aprofundamento do canal da Baía da Babitonga de 14 metros (atuais) para 16 metros de profundidade.

2.3 O Estudo da Erosão Costeira

Diversos autores, como Leathermann (1988 e 2003), Crowel *et al.* (1991), Moore (2000), entre outros, obtiveram avanços e erros no tratamento de dados e, também, nos métodos de análises que abrangem as variações da linha de costa de curto a longo prazo.

O trabalho de Serafim e Bonetti (2017) apresenta uma alternativa metodológica para o mapeamento da vulnerabilidade costeira em relação aos eventos extremos de ondas e marés em SC, a partir da criação de um índice multicritério e na utilização de um sistema de informação geográfica, que foi baseado em 2 submodelos: o primeiro, referente a capacidade adaptativa que engloba as variáveis socioeconômicas. O segundo, a suscetibilidade, composto das variáveis do meio físico. Embora este estudo de Serafim e Bonetti (2017) tenha sido bastante eficiente na proposta do modelo utilizado, é importante ressaltar que ele se limitou a caracterizar a vulnerabilidade costeira e não investigou suas causas e origens em escala regional. No entanto, o modelo foi eficaz para um estudo em escala estadual e para fatores climáticos extremos.

Já no trabalho de Santos *et al.* (2015), foi apresentada uma metodologia para a vulnerabilidade costeira e à elevação do nível do mar em escala local. Para isso, foi criado um índice de vulnerabilidade costeira com a combinação de quatro variáveis geológicas: geomorfologia, declividade, elevação e taxa de erosão/acreção na face de praia e três variáveis de processos físicos costeiros: taxa de elevação do nível médio do mar, altura significativa de onda e amplitude de maré média. Este estudo demonstrou bons resultados para aplicação na linha de costa e em escala local onde detalhes sejam necessários.

O estudo de Silva *et al.* (2013) teve o objetivo de modelar os dados de diversas maneiras, principalmente com o uso da Global Navigation Satellite Systems (GNSS) e do sensoriamento remoto para, posteriormente, identificar a espacialização da vulnerabilidade costeira à erosão utilizando a metodologia *fuzzy*. A lógica *fuzzy* consiste emconjuntos de Lukasiewicz (graus de pertinência sendo: 0, $\frac{1}{2}$ e 1, posteriormente expandiu um número infinito de valores entre 0 e 1). A metodologia é formada por três etapas: a fuzzificação, a inferência e a defuzzificação. Após análise, os níveis de vulnerabilidade à erosão costeira encontradas no litoral de Recife e Jaboatão dos Guararapes ao longo da linha de costa neste estudo foram: 33,33% da linha de costa possui vulnerabilidade baixa, 38,15% possuem vulnerabilidade moderada, 14,26% vulnerabilidade alta e 14,26% muito alta

Segundo Mazzer *et al.* (2008), o uso de uma metodologia combinada é mais eficiente no estudo da vulnerabilidade costeira, como a junção de parâmetros geomorfológicos, taxas de variação da linha de costa, variações do nível do mar, altura de ondas etc., que foi baseado em dois pressupostos o primeiro: nas células costeiras são unidades homogêneas de balanço sedimentar; o segundo: os processos costeiros que atuam na linha de costa operam em diversas escalas temporais. A partir disso, oito variáveis ligadas à morfodinâmica e duas taxas de variação da linha de costa (interanual e interdecadal) juntamente a uma análise de risco. Os resultados obtidos pelos autores foram que a inclinação da face litorânea e a altura de ondas são variáveis muito importantes no estudo da vulnerabilidade costeira. Os autores reforçam que a análise realizada por eles em associação com escalas espaciais pode fornecer bastante conhecimento para fins de gerenciamento costeiro.

Na Ilha de Santa Catarina, Rudorff e Bonetti (2010) analisaram a suscetibilidade

das praias a partir da junção metodológica que abrangia os geoindicadores (esses geoindicadores foram interpolados no sistema SIG - método Inverso do Quadrado da Distância (MIQD). Também foi utilizado o modelo de elevação baseado na lógica difusa - teoria dos conjuntos difusos. Por fim, a distância entre a linha de costa foi adicionada a este índice. Portanto foram descritos dessa forma:

suscetibilidade=((geoindicadoresXdistânciadifusaX)x0,8)+(MDEdifusoX0,2) Representado por 0,2 e 0,8 é o peso dado a elevação e geoindicadores x distância, respectivamente. No geral, os resultados entraram em conformidade com o estudo de Simón e Horn, quando os resultados apontaram "Alto Risco" como o resultado de "Ressacas". No entanto, apesar de não diagnosticar as taxas de probabilidade de erosão, os geoindicadores permitiram avaliar eficientemente as variações de suscetibilidade das praias.

Diversas tecnologias foram apresentadas para análise da variação da linha de costa. Recentemente o uso do DGPS (GPS Diferencial) e Sensores Laser (LIDAR) e monitoramento realizados por imagens de satélites tem sido utilizado em estudos (LEATHERMANN, 2003). No entanto, mais recentemente, o uso da modelagem e na criação de algoritmos que monitorem e previnam acidentes e que possam demonstrar à população dados com mais precisão dos processos envolventes nos processos de erosão tem ganhado muita força pelo mundo.

Por isso, a constante busca por técnicas e análises sobre o avanço do nível costeiro é importante para determinar os processos existentes que desencadeiam a erosão costeira, com a finalidade de mitigar os impactos pertinentes a este processo.

2.3.1 Utilização da Modelagem MOHID no Estudo da Erosão Costeira

A modelagem numérica MOHID começou a ser utilizada no Brasil nos projetos atualmente desenvolvidos pelo projeto "Sea Observatory and operational modelling system for the south-eastern Brazilian shelf", o qual aborda toda costa sudeste brasileira no monitoramento de desastres marítimos, como os derramamentos de óleo na intenção de identificar o trajeto percorrido e a sua origem (SEA OBSERVATORY, 2019).

O MOHID foi desenvolvido pelo Instituto Maretec em Portugal e no país é muito utilizado para diversos fins. A partir do relatório Zonas Costeiras e Mar (2020), a modelagem MOHID foi utilizada para determinar o efeito da elevação do nível médio do mar na hidrodinâmica do estuário e o seu reflexo no transporte e distribuição de salinidade. Os modelos hidrodinâmicos e de transporte são implementados usando o método dos volumes finitos numa malha computacional genérica sendo as equações de Navier-Stokes e de transporte resolvidas por um método ADI. A principal dificuldade encontrada nas simulações é a escolha da malha computacional com a finalidade de proporcionar uma resolução espacial adequada ao estudo que se pretende realizar sem incorrer em tempos de cálculo excessivos (MARATEC, 2021).

Segundo Sea Observatory (2019) um sistema operacional de modelagem hidrodinâmica para a plataforma sudeste brasileira, focando inicialmente nas costas dos estados do Paraná e de Santa Catarina, está em implementação para fornecer resultados de previsão com alta resolução espacial ao Observatório do Mar. Os resultados dos modelos hidrodinâmicos globais e costeiros poderão ser utilizados para a previsão da dispersão de óleo em casos de derrame e auxiliar em ações emergenciais, como exemplo. Na pesquisa de Franz (2017), sobre o balanço hidrodinâmico e geomorfológico da costa da Caparica em Portugal, o modelo MOHID conseguiu simular todos os fluxos correspondentes do local e, principalmente, os processos deposicionais e erosionais fornecendo bons resultados para o monitoramento do ambiente (SEA OBSERVATORY, 2019).

2.4 As Mudanças Climáticas e a Erosão Costeira

A série de recordes mundiais de extremos climáticos atualmente notificados por autoridades do clima como a Organização Meteorológica Mundial (OMM) e nos relatórios do Painel Intergovernamental sobre Mudanças Climáticas (IPCC) do ano de 2021, refletem o agravamento de indicadores de extrema importância relacionados às mudanças climáticas. Os cientistas da agência das Nações Unidas alertam para a importância de adoção de medidas que revertam esse cenário, como a troca de combustíveis fósseis por fontes de energias renováveis. Segundo os especialistas, é necessário tomar medidas adequadas para a contenção de situações mais críticas e mais drásticas no futuro, que seriam capazes de conduzir a humanidade a uma catástrofe ambiental.

Segundo o OMM (2022), os dados de 2021 são alarmantes, principalmente sobre o aumento da temperatura, sendo que o aquecimento segue de 2,5°C a 3°C, ao invés de 1,5°C como estimado pelo protocolo de Paris. Segundo as estimativas do IPCC, os dados apontam para uma elevação do nível do mar que pode chegar a taxas de 0,13 a 0,50 mm/ano até 2100, pois o aumento do nível do mar para a última década foi de 4,5 cm, desencadeado pelo aumento da temperatura do planeta de 1,1°C (IPCC, 2021; OMM, 2022).

O nível do mar varia em diversos sistemas em escalas temporais e espaciais, estas que podem ser divididas em três grandes categorias: o Nível Médio Global do Mar (GMSL); a variação regional sobre esta média; e a ocorrência de extremos do nível do mar associados a tempestades e marés. Segundo Church *et al.* (2013) o GMSL vem crescendo exponencialmente desde o final do século 19 e comprovadamente segundo os relatórios do IPCC (2021) e MMO (2022).

O clima da região litorânea é diferenciado das demais regiões, em decorrência, principalmente, pelas diferenças de pressão entre continente e oceano. Para estudar a Erosão Costeira é de extrema importância o conhecimento do clima costeiro, porque é a energia das ondas, a intensidade e a recorrência de tempestades que gerenciam o processo de erosão pelo transporte sedimentar (MUEHE, 1998; PILKEY et al., 2009). Segundo Tessler e Goya (2005), o transporte sedimentar na linha de costa possui duas forçantes principais, o Clima de Ondas e o Regime de Marés. O clima de ondas é definido pelo produto de três sistemas atmosféricos: 1. ZCIT – Zona de Convergência Intertropical (Forma a circulação mais ao Norte do Brasil); 2. ZCAS - Zona de Convergência do Atlântico Sul (Centro de Alta Pressão, que influenciam as tempestades); 3. APM -Anticiclone Polar Migratório (Centros de Alta Pressão que formam os sistemas frontais). Na costa sul brasileira, as ondas que atingem a costa são forçadas pelos ventos alísios, no entanto, as ondas com maior capacidade de transporte sedimentar são as associadas aos sistemas frontais ou massas polares, que podem resultar em ondas de 1 até 4 metros de altura (TESSLER e GOYA, 2005). Já o regime de marés possui seus níveis de Preamar e da Baixamar, que são condicionantes que modelam a costa. Na maior parte do litoral sul brasileiro essa mudança de nível ocorre até 2 metros, caracterizado pelas micromarés (TESSLER e GOYA, 2005).

Segundo Muehe (2011), os processos erosivos na linha de costa estão mais relacionados aos eventos climáticos extremos, por isso, o monitoramento de eventos climáticos é de extrema importância.

3 METODOLOGIA

A metodologia foi dividida em 4 etapas: Levantamento do índice de vulnerabilidade costeira e caracterização das praias para a identificação do estado erosional atual; Levantamento dos dados e simulação por meio da modelagem numérica MOHID (Modelo Hidrodinâmico); Levantamento de série temporal junto aos bancos de dados e de imagens para análise da linha de costa; Levantamento de dados climáticos a partir das instituições que monitoram os eventos de grande intensidade na região. Dessa forma, as anomalias na série temporal da linha de costa serão analisadas e, posteriormente, relacionadas com eventos extremos ocorridos por meio de referências documentais.

3.1 Área de Estudo

O estudo foi desenvolvido na cidade de Itapoá, localizada na costa norte do estado de Santa Catarina (Latitude 26°07'01" S e Longitude 48°36'58"W), na região Sul do Brasil. Itapoá possui aproximadamente 30 km de linha de praia (Figura 4). A população estimada de Itapoá é de 21.177 habitantes para 2021 (IBGE, 2021). A área de estudo foi dividida em 9 (nove) pontos de praia, subdivididos de acordo com divisões geomorfológicas de norte a sul da cidade. Os pontos foram definidos a partir da análise de estado erosional prévia identificada através da caracterização dos perfis e por estudos anteriores, como por exemplo, no estudo de Angulo *et al.* (2002) e da Prefeitura de Itapoá (2021) (Figura 4).

Figura 4 - Município de Itapoá-SC e divisão dos 9 pontos de praia.

3.2 Caracterização do Perfil Praial

A caracterização do perfil praial e do estado erosional de cada praia foi obtida por meio de descrições dos perfis topográficos e análise visual em campo, juntamente com a análise de fotos anteriores para a caracterização de cada perfil praial. A caracterização do perfil praial foi realizada em duas campanhas, em setembro de 2021 e junho de 2022, observando-se as características deposicionais para identificar o estado erosional de cada praia, incluindo a presença de enrocamentos, pavimentações, manguezais, restingas e outros aspectos gerais.

3.2.1 Perfil Topográfico das Praias

O Perfil topográfico das praias foi obtido através do monitoramento que atualmente é realizado pela Prefeitura de Itapoá/SC. O método de avaliação é baseado nas Balizas de Emery, que consiste em duas balizas (Fig. 5) de 1,5 m de comprimento cada. A diferença entre elas é determinada como linha horizontal (KOWMANN, 1970). Os pontos foram divididos em 6 praias (Fig. 6) para a análise do perfil, a partir de análise visual e perfil similares realizados em 2021. Os perfis foram distribuídos de maneira diferente da caracterização praial deste estudo, devido terem sido realizados pela Prefeitura de Itapoá, sob coordenação da equipe da Secretaria do Meio Ambiente e fornecidas e esta pesquisa. Por isso, o perfil Pf01 representa o **P09**, o perfil Pf02 representa o ponto **P06**, o perfil Pf05 representa o ponto **P03**, o perfil Pf06 representa o ponto **P01**. Não foram realizados perfis topográficos nos pontos **P02 e P04**.

Fonte: Kowmann (1970).

Fonte: Prefeitura de Itapoá (2021).

3.3 Índice de Vulnerabilidade Costeira

O índice de vulnerabilidade costeira adotado nesta análise foi baseado nos geoindicadores apresentados no estudo de Perinotto *et al.* (2012), que levou em conta a caracterização do perfil praial e do estado erosional de cada praia a partir de descrições sobre a presença de enrocamentos, pavimentações, manguezais, restingas e outros aspectos gerais (Quadro 1). Esta análise foi realizada a partir de visualização em campo, bem como análise de fotos para caracterização de cada perfil praial.

A área de estudo foi dividida em 9 pontos de praia, subdivididos de acordo com divisões geomorfológicas de norte a sul da cidade e, posteriormente, cada ponto foi analisado e aplicado o índice baseado nos geoindicadores.

Estado Erosiona	al	Indicadores/Variáveis									Número de Identificação		
		Escarpamento ativo por ondas no pós-praia frequente								1.1			
		Escarpamento de praia evidente (por ondas e marés)									1.2		
EROSÃO SEVERA		Ausência de praia seca									1.3		
		Muitas propriedades ou estruturas impactadas e/ou com estruturas de contenção									1.4		
		Turfa e/ou lama expostos na praia ou ao longo da escarpa no pós-praia									1.5		
		Vegetação derrubada ou raízes expostas ao longo da escarpa no pós-praia										1.6	
		Trechos (pontuais) de escarpamento por ondas no pós-praia								2.1			
		Escarpamento de praia pontuais, esparsos								2.2			
EROSÃO)	Faixa de praia seca estreita								2.3			
		Algumas propriedades ou estruturas impactadas, com estruturas de contenção									2.4		
		Estruturas de contenção pontuais									2.5		
ESTABILIDADE OU ACRESÇÃO		Duna frontal bem desenvolvida, alta e/ou com vegetação bem estabelecida									3.1		
		Faixa de praia seca estreita, larga e bem desenvolvida									3.2		
		Presença de berma bem desenvolvida na praia, sem escarpas ou erosão									3.3		
INDICADOR	1.1	1.2	1.3	1.4	1.5	1.6	2.1	2.2	2.3	2.4	3.1	3.2	3.3
PESO	2	2	2	4	2	2	1	1	1	2	-2	-2	-2

Quadro 1 - Indicadores e variáveis utilizadas para classificação do estado erosional das praias (baseado no estudo de Perinotto et al. 2012).

Fonte: O autor, 2022, adaptado de Perinotto et al. (2012).

Após a obtenção dos dados, foi designada uma pontuação para cada geoindicador (Quadro 1). A soma final desta pontuação foi aplicada para entender e caracterizar o estado erosional de cada ponto, a partir das seguintes determinações: soma maior que 5 = "erosão severa"; soma entre 2 e 5 = "erosão"; soma menor que 2 = "estabilidade ou acresção".

3.4 Simulação por meio da modelagem numérica MOHID

A partir do modelo numérico computacional MOHID o perfil hidrodinâmico da região foi obtido (modelo MOHID implementado para a costa dos estados do Paraná e Santa Catarina pelo Centro de Estudos do Mar, no âmbito do projeto "Sea Observator and operational modelling system fot the south-eastern Brazilian shelf" (BSO, 2021)). Os dados utilizados para traçar o perfil através do MOHID foram obtidos através da Marinha do Brasil (maré e batimetria); INMET (vento); Propriedade da água (analisados *in situ* pelo Programa).

O MOHID é um sistema de modelagem computacional tridimensional composto por diferentes módulos integrados, desenvolvido pelo Centro de Pesquisa e Tecnologia Marinha e Ambiental (MARETEC – Marine and Environmental Technology Research Center) do Instituto Superior Técnico (IST) da Universidade de Lisboa, Portugal. Este sistema permite simulações do transporte de propriedades constituintes da água, tais como, salinidade, calor, sedimentos, processos ecológicos e outros parâmetros de qualidade da água (MARETEC, 2017). Através deste sistema foram analisados o balanço sedimentar e hidrodinâmico atual desde 2019.

3.4.1 Validação do Modelo

A validação do Sistema de Modelagem Operacional foi realizada a partir Centro de Estudos do Mar (CEM) parte da Universidade Federal do Paraná (UFPR) - Brasil, apoiada pelo grupo MARETEC, um centro de investigação do Instituto Superior Técnico (IST – Universidade de Lisboa – Portugal). O objetivo foi fornecer resultados de previsão de parâmetros oceânicos diariamente para o Observatório do Mar brasileiro à escala costeira. A ferramenta numérica adotada é o sistema de modelagem MOHID, que tem sido aplicado em inúmeros projetos em diferentes países (www.mohid.com). A configuração do modelo em escala regional para a plataforma sudeste brasileira é o primeiro domínio do sistema de modelagem, abrangendo os litorais dos estados de Santa Catarina, Paraná, São Paulo e Rio de Janeiro, com resolução horizontal de aproximadamente 3 km x 3 km e vertical de 50 camadas, com menos de 1 m de espessura

próximo à superfície. O sistema de modelagem MOHID permite adotar diferentes tipos de coordenadas verticais para uma melhor representação dos mecanismos que forçam a hidrodinâmica. Neste caso, as coordenadas cartesianas foram usadas para as camadas mais profundas e as coordenadas Sigma para as camadas mais próximas da superfície e a batimetria do modelo em escala regional foi definida com base no banco de dados online GEBCO (https://www.gebco.net/). Para a validação, primeiramente, o modelo regional foi validado com satélites e medições in-situ. A comparação entre a temperatura da superfície do mar a partir de imagens de satélite e do modelo regional é apresentada para dias de verão e dias de inverno. Durante o inverno, mais frio a água entra pelo limite sul, enquanto no verão o padrão do vento muda e águas mais frias são observadas no limite Norte devido ao processo de ressurgência na costa do Rio de Janeiro. Água com menos salinidade no inverno também vem do Sul devido ao Rio de la Pluma del Plata. No entanto, as imagens de satélite têm uma resolução baixa para a salinidade da superfície do mar para uma adequada validação dos resultados do modelo. Medições in-situ de temperatura e salinidade de flutuadores de perfilamento à deriva fornecem mais informações sobre a precisão dos resultados do modelo dentro da coluna de água. No entanto, estes flutuadores normalmente coletam dados em oceano aberto e mares marginais não são bem cobertos. Para fins de calibração e validação, o ano de 2014 foi simulado devido à existência de medições locais in situ na foz do sistema estuarino de Paranaguá da costa brasileira Sistema de Monitoramento (SiMCosta), que é uma rede integrada de plataformas flutuantes ou fixas, dotados de instrumentos e sensores, com funcionamento autónomo e capacidade de regular e coletar variáveis oceanográficas e meteorológicas. Todavia, toda descrição da validação do modelo utilizado neste projeto se encontra no relatório file:///C:/Users/Di/Downloads/L2'-FinalReport_update_v1.pdf (SEA OBSERVATORY, 2019)

3.5 Série Temporal da Linha de Costa

A série da linha de costa foi completada através do levantamento cartográfico a partir da base de dados dos satélites Landset 5, 6, 7 e 8 (Catálogo de Imagens do INPE, NASA e banco de Satélites USGS), a fim de analisar a série temporal das posições da linha de costa ao longo dos anos. Os principais satélites utilizados para esta pesquisa estão descritos a seguir:

- O Satélite Landsat 5: O sensor MSS (Multispectral Scanner System) foi lançado a bordo dos cinco primeiros satélites da série Landsat e passou por algumas atualizações durante o tempo. Com exceção do L3 que foi projetado com a banda 8 termal, os demais foram desenhados com quatro canais dispostos nas regiões do visível e infravermelho próximo. Embora projetado com a banda 8, o sensor MSS a bordo do L3 também operou com quatro bandas devido à falha no sensor termal ter ocorrido após o lançamento. Algumas alterações verificadas entre as versões do MSS durante o tempo dizem respeito às próprias características dos satélites, que reduziram o tempo de revisita de 18 para 16 dias e aumentaram a acurácia no armazenamento dos dados de 6 para 8 bits.
- 2. O Satélite Landsat 6: O sensor ETM (Enhanced Thematic Mapper) foi projetado para ser levado a bordo do Landsat 6, no entanto, não entrou em operação devido à falha ocorrida no lançamento do satélite. Em relação ao seu antecessor, o sensor TM, foi incluída uma nova banda pancromática (banda 8) com 15 metros de resolução espacial e mantidas as demais configurações técnicas.
- 3. O Satélite Landsat 7: O sensor ETM+ (Enhanced Thematic Mapper Plus), a bordo do satélite Landsat 7, foi o sucessor operacional do instrumento TM e manteve configurações técnicas muito semelhantes a ele oferecendo a versatilidade e eficiência obtidas nas versões anteriores. Além disso, contribuiu para ampliar o uso dos produtos, pois conseguiu melhorar a acurácia do sistema, ampliou a resolução espacial da banda 6 (infravermelho termal) para 60 metros, além de tornar a banda pancromática operante e permitir a geração de composições coloridas com 15 metros de resolução. Em 31/05/2003 o sensor apresentou problemas de funcionamento e a partir dessa data as cenas do Landsat 7 foram enviadas em modo SLC-Off para serem utilizadas necessitam de correções prévias e análise de acurácia no posicionamento e calibração dos pixels.
- 4. O Satélite Landsat 8: O sensor OLI (Operational Land Imager) possui bandas espectrais para coleta de dados na faixa do visível, infravermelho próximo e infravermelho de ondas curtas, além de uma banda pancromática. Avanços tecnológicos demonstrados por outros sensores experimentais da NASA foram introduzidos no sensor OLI, que passou a ter quantização de 12 bits. A entrada em operação do sensor a bordo do Landsat 8, permite a continuidade dos trabalhos
em sensoriamento remoto iniciados na década de 1970, com a missão Landsat. E, o sensor TIRS TIRS - (Thermal Infrared Sensor) possui bandas espectrais na faixa do infravermelho termal. Oferece continuidade à aquisição de dados captados pela banda 6 do TM e ETM+. Os dados do sensor TIRS possuem 100m de resolução espacial, com resolução radiométrica de 12 bits e corregistro com os dados oriundos do sensor OLI.

A linha completa da série de dados dos anos 1985, 1995, 2005, 2015 e 2022 foram utilizadas para completar a cronologia para análise de variação da linha de costa. O sistema Cassie do CassieEngine foi utilizado para caracterização e variação da linha de costa ao longo dos anos. O CASSIE é uma aplicação de código aberto que utiliza os serviços Google Earth Engine (GEE) para simplificar e auxiliar a análise de linhas de costa, sendo capaz de efetuar automaticamente a digitalização da posição de linhas de costa de imagens de satélite e providenciar uma análise estatística conforme especificações do Digital Shoreline Analysis System (DSAS). O DSAS gera resultado com transectos ortogonais a uma linha de base determinada pelo usuário (baseline) em um espaçamento definido, assim as taxas de mudanças são calculadas através de métodos estatísticos distintos. O método adquirido para esse estudo foi o de regressão linear (LRR). Este método, calcula as taxas de recuo de linha de costa através de regressão linear simples, baseado nas variações entre traçados. Como resultado, os valores negativos apresentados pelo DSAS representam as áreas onde pôde ser constatados índices de erosão, enquanto os valores positivos demonstram tendências de deposição nas regiões estudadas.

A partir desse sistema foram escolhidas 10 imagens (2 para cada ano) de satélite com até 2,5% em cobertura de nuvens, duas imagens para cada ano, considerando possíveis períodos sem detecção de maré meteorológica e o configurando o processamento em transectos de 100 m de distância entre eles, com limiar nº 0 e extensão de 800m de comprimento para cada transecto.

Para o processamento das imagens, o software *Qgis Desktop 3.28 Firenze* foi utilizado. Para obtenção das imagens de satélite o *Timelapse do Google Earth Engine* foi utilizado como banco de satélite de análise da linha de costa no período de 1984 a 2020 em formato de imagem e vídeo para análise visual dos dados.

3.6 Mudanças Climáticas

As mudanças climáticas foram analisadas a partir de duas vertentes, da análise dos dados de eventos extremos que geraram algum tipo de calamidade pública (Decretações do Estado pela Defesa Civil), assim como, foram analisados os dados meteorológicos (vento) correlacionados com dados oceanográficos (maré).

3.6.1 Decretações de Desastres

Os dados de desastres foram obtidos a partir do site da Defesa Civil do Estado de Santa Catarina, a partir das Decretações de Situação de Emergência e de Estado de Calamidade Pública dos anos de 1998 a 2020 (DEFESA CIVIL, 2023). Esses dados foram planilhados com auxílio do *Software Microsoft Excel (2019)*. Posteriormente, os dados que geram ou podem gerar erosão costeira foram selecionados (dados de **tempestades**, **chuvas**, **vendavais**, **enxurradas e ciclones**) da região do litoral norte de Santa Catarina (Garuva, Itapoá, Joinville, São Francisco do Sul, Barra do Sul, Araquari e Barra Velha). A partir dos dados reunidos, os mesmos foram quantificados por período para entender como a região vem evidenciando os eventos extremos, com a finalidade de interpretar se esses dados ou eventos podem estar exercendo alguma influência no aumento da erosão costeira na região de Itapoá.

3.6.2 Marés

Os dados dos marégrafos de Ilha da Paz (ANEXO 10), Itapoá (ANEXO 11) e Guaratuba (ANEXO 12) foram obtidos através da Marinha do Brasil, que disponibilizou de 1972 (Guaratuba), 1995 (Guaratuba e Ilha da Paz), 1999, 2002 e 2009 (Ilha da Paz), 2016 a 2019 (Ilha da Paz e Itapoá). A construção da série temporal dos dados de maré não pode ser realizada a partir da junção dos dados dos três marégrafos, pois não há disponibilidade dos dados completos e sem interrupção para a série de 30 anos, devido as diversas falhas que os sensores apresentaram ao longo dos anos e pela inexistência de dados. Por isso, foram utilizados dados de 2014 e 2022 do marégrafo de Itapoá para a análise, obtidos através da EPAGRI/CIRAM via pedido oficial de dados por e-mail.

O processamento dos dados obtidos foram planilhados com o auxílio do programa *Microsoft Office Excel* (2019), e, posteriormente, processado no programa *Software Rstudio*. A normalidade dos Dados foi testada a partir do Teste de Normalidade de Anderson Darling.

3.6.3 Ventos

Os dados históricos meteorológicos de vento, foram obtidos do Instituto Nacional de Meteorologia (INMET) através da Estação Meteorológica Automática (EMA) A851 de Itapoá (Período de 2007 a 2022). Os dados de vento do período de 2007 a 2022 (assim como os períodos individuais) foram processados através do programa *Microsoft Office Excel* (2019) e do *Software WRplot View 8.0.2* e testados no *Software Rstudio*. Todavia, os dados de 2014 a 2022 foram correlacionados aos dados de maré do mesmo período. A normalidade dos dados foi testada a partir do Teste de Normalidade de *Anderson Darling*.

3.6.4 Maré e Vento

A partir dos resultados dos testes de normalidade, os dados de vento (a componente zonal [u] e meridional [v]; e a velocidade do vento) e de maré meteorológica, observada e astronômica (2014 e 2022) foram processadas e correlacionados a partir do Coeficiente de Correlação de Postos de Spearman no Software R Studio e no Software Minitab, o teste de correlação escolhido levou em conta a característica não paramétrica dos dados, obtida através dos testes de normalidade. Dentro das etapas, foram realizadas algumas filtragens dos dados, como os presupostos do Percentil 80, o qual para análise foram utilizados os 20% dos dados extremos e, posteriormente, correlacionados, bem como os dados de ventos foram condicionado a cada quadrante (leste, oeste, norte e sul). O coeficiente de correlação de postos de Spearman, denominado pela letra grega p (rho), é uma medida de correlação não-paramétrica com hipóteses: **H0**: As variáveis (maré met. e vento) não são correlacionadas (ps = 0); H^1 : As variáveis (maré met. e vento) são correlacionadas ($ps \neq 0$). A fórmula bruta da correlação é apresentada por: $r_s = 1 - 1$ $[(6 * somat \circ rio(d^2)) / (n * (n^2 - 1))]$, onde: r_s : é o coeficiente de correlação dos postos de Spearman; d: é a diferença entre os postos das duas variáveis para cada observação; **n**: é o número total de observações.

4 RESULTADOS

A partir da pré-caracterização *in situ* realizada em setembro de 2020 e junho de 2021 foram definidas e estabelecidas a divisão dos pontos que foram classificados de acordo com as características físicas apresentadas, pela extensão territorial, pela análise visual do estado erosional (quando os pontos possuíam maiores extensões) e baseado também em relatórios técnicos anteriores solicitados pela prefeitura (LAUDO TÉCNICO/UFPR, 2002) e no estudo de Perinotto *et al.* (2012), de norte a sul como: P 01 – Barra do Saí; P 02 – Central; P 03 – Itapema do Norte; P 04 – Primeira e Segunda pedra; P 05 – Prefeitura; P 06 – Bombeiros; P 07 – Uirapuru; P 08 – Pontal Norte; P 09 – Pontal. A divisão também pode ser analisada conforme a imagem (Quadro 1).

4.1 Caracterização das Praias

Após a divisão dos pontos foi realizado a caracterização de cada perfil praial a partir de análise em campo (*in situ*) inicialmente no dia 18 de setembro de 2021 em Itapoá (prévia) e no dia 16 de maio de 2022 a análise descritiva definitiva. A partir da definição dos pontos foram observadas as principais características de cada ponto, conforme resumo mostrado no quadro 2. As imagens de cada ponto podem ser observadas nas figuras dos anexos 1 a 9.

PONTO	LOCAL		DESCRIÇÃO					
P01	Barra do		Perfil misto/ intermediário					
	Saí		Praia Livre/ Aberta (GALLOP et al., 2020)					
			Influência de desembocadura dos rios Saí-Guaçu e Saí-Mirim					
			Praia oceânica ou de mar aberto (LAUDO TÉCNICO, 2002)					
			Dominada por ondas (SHORT, JACKSON, 2013)					
			Granulometria: Areia Fina (Pós-Praia; Face da Praia; Praia média) (PORPILHO, 2012)					
P02	Central		Perfil refletivo					
			Praia Livre/ Aberta (GALLOP et al., 2020)					
			Alinhamento no relevo de praia					
			Praia oceânica ou de mar aberto (LAUDO TÉCNICO, 2002)					
			Dominada por ondas (SHORT, JACKSON, 2013)					
			Granulometria: Areia Fina (Pós-Praia; Face da Praia; Praia média) (PORPILHO, 2012)					

Quadro 2 - Divisão e caracterização das praias em Itapoá-SC.

P03	Itapema do	Perfil refletivo							
	Norte	Praia de Enseada (GALLOP et al., 2020)							
		Praia com a presença de 1 pontal rochoso							
		Praia oceânica ou de mar aberto (LAUDO TÉCNICO, 2002)							
		Dominada por ondas (SHORT, JACKSON, 2013)							
		Granulometria: Areia Fina (Pós-Praia; Face da Praia; Praia média) (PORPILHO, 2012)							
P04	Primeira	Perfil misto/ intermediário							
	Pedra e	Praia de Bolso ou Enseada - (GALLOP et al., 2020)							
	Segunda	Praia com arco praial (2 pontais rochosos)							
	Pedra	Praia oceânica ou de mar aberto (LAUDO TÉCNICO, 2002)							
		Dominada por ondas (SHORT, JACKSON, 2013)							
		Granulometria: Areia Fina (Pós-Praia; Face da Praia; Praia média) (PORPILHO, 2012)							
P05	Prefeitura	Perfil refletivo							
		Praia Enseada (GALLOP et al., 2020)							
		Praia possui a presença de um pontal rochoso							
		Praia oceânica ou de mar aberto (LAUDO TÉCNICO, 2002)							
		Dominada por ondas (SHORT, JACKSON, 2013)							
		Granulometria: Areia Fina (Pós-Praia; Face da Praia; Praia média) (PORPILHO, 2012)							
P06	Bombeiros	Perfil refletivo							
		Praia Livre/ Aberta (GALLOP et al., 2020)							
		Alinhamento no relevo de praia							
		Praia de desembocadura (LAUDO TÉCNICO, 2002)							
		Dominada por ondas (SHORT, JACKSON, 2013)							
		Granulometria: Areia Fina (Pós-Praia; Face da Praia; Praia média) (PORPILHO, 2012)							
P07	Uirapuru	Perfil refletivo							
		Praia Livre/ Aberta (GALLOP et al., 2020)							
		Alinhamento no relevo de praia							
		Dominada por ondas (SHORT, JACKSON, 2013)							
		Granulometria: Areia Fina (Pós-Praia; Face da Praia; Praia média) (PORPILHO, 2012)							
P08	Pontal	Perfil misto a dissipativo (SHORT, JACKSON, 2013)							
	Norte	Enseada - Praia de Baia (GALLOP et al., 2020)							
		Praia com influência direta da desembocadura estuarina (Baia da Babitonga)							
		Praia de desembocadura (LAUDO TÉCNICO, 2002)							
		Modificada pela maré (SHORT, JACKSON, 2013)							
		Granulometria: Areia Fina (Pós-Praia; Face da Praia; Praia média) (PORPILHO, 2012)							
P09	Pontal	Perfil dissipativo							
		Praia de Baia (abrigada) (GALLOP et al., 2020)							
		Praia abrigada com influência direta da desembocadura estuarina (Baia da Babitonga).							
		Praia estuarina (LAUDO TÉCNICO, 2002)							

Fonte: O autor, (2022).

Os pontos P01 e P02 (ANEXO 1 e 2, respectivamente) apresentaram sintomas de erosão nulos ou muito leves, cujas praias possuem maior estabilidade em seu perfil praial e maiores faixas de areia. No **P02**, pode-se verificar a linha da vegetação de restinga bem estabilizada (ANEXO 2). Já no ponto P03 (ANEXO 3), foi identificado extrema erosão costeira, com trechos sem faixa de areia e com muitas estruturas de contenção e com pavimentação e residências diretamente sendo afetadas. No ponto P04 (ANEXO 4), as duas praias são caracterizadas pela formação de arcos definidos por pontais rochosos. Nessas duas praias ocorre erosão, porém mais leve comparadas ao ponto P03. Já no P05 (ANEXO 5) a intensidade da erosão diminui, demonstrando diversos pontos com estabilidade e/ ou acresção, com presença de vegetação de restinga estabilizada. Apenas em alguns locais foram encontrados faixas de enrocamentos rochosos próximos às casas (ANEXO 5). No P06 (ANEXO 6) nota-se o avançado estágio de erosão costeira, com grande impacto direto sobre as residências e pavimentações, com a presença de enrocamentos rochosos como medida de contenção e altura dos enrocamentos na faixa de 2,5 m. Além disso, ocorre ruptura em alguns locais, formando pequenas praias de bolso. Na sequência o ponto P07 e P08 (ANEXOS 7 e 8, respectivamente) encontram-se sob maior estabilidade ao longo de toda extensão. Alguns locais no P07 tem a presença de enrocamento e destroços e, de escarpas evidentes (degraus) em seu perfil ocasionados pela ação da erosão. Por último, o P09, que é caracterizado pela ação direta da Baía da Babitonga, possui perfil estável e, de fato alguns locais possuem pouca faixa de areia, no entanto se trata de um local com menor força hidrodinâmica e apenas mais sensível às mudanças sazonais, como a maré.

4.1.1 Topografia das Praias

Os perfis topográficos Pf01, Pf02, Pf03, Pf04, Pf05 e Pf06 (Fig. 7 a 12, respectivamente), foram analisados a partir dos conceitos topográficos de perfis praiais representados por Komar (1976) (Fig. 13). Os perfis foram distribuídos de maneira diferente da caracterização praial, por isso, deve-se analisar os perfis da seguinte maneira: o perfil Pf01 representa o ponto **P09**, o perfil Pf02 representa o ponto **P08**, o perfil Pf03

representa o ponto **P07**, o perfil Pf04 representa o ponto **P06**, o perfil Pf05 representa o ponto **P03**, o perfil Pf06 representa o ponto **P01**.

No perfil Pf01 (P09), nos meses de junho de 2021 e novembro de 2020 o perfil tentou construir Berna levemente mais desenvolvida, mas no geral em todo o restante do período não obtiveram significativas variações. Nota-se um perfil típico de praia estuarina, o qual demonstra pouca variação na faixa de praia. Normalmente praias estuarinas, possuem pouca variação devido a principal características de mudanças estar conectado com a ação da maré e não das ondas. O perfil também possui maior declive em decorrência da maior profundidade do ambiente e não resultante de processos erosivos. No perfil Pf02 (P08), nos meses de novembro e setembro de 2020, o perfil também tentou construir levemente a Berna, no entanto nos outros meses foi destruída e entre as distâncias de 20 m a 45 m da face da praia, as diferenças foram de até 1,20 m para perda de sedimento no perfil. No perfil Pf03 (P07), este perfil não obteve diferenças significativas em todo período analisado, no entanto a presença de Berna no perfil é pouco desenvolvida e a tendência de um perfil de tempestade. No perfil Pf04 (P06), ocorreram leves diferenças na construção da Berna em dezembro de 2021, e entre as distâncias de 10 m a 50 m as diferenças entre os meses foram de até 1 m entre construção e desconstrução. Este perfil, também demonstrou tendência de perfil de tempestade. No perfil Pf05 (P03), no mês de agosto de 2020 a Berna tende a ficar mais desenvolvida e com ausência nos outros períodos da análise. Entre as distâncias de 5m a 60m, variou até 1,20 entre os meses. Este perfil possui a tendência de perfil de tempestade. No perfil Pf06 (P01 e P02), este perfil demonstrou-se que variada variabilidade sazonal, apenas em outubro de 2021 ocorre uma desconstrução da Berna e nos demais meses com Berna melhor desenvolvida. O perfil representa em alguns meses perfil de tempestade e em alguns meses perfil de tempo bom e essa variação ocorre sazonalmente. Nos perfis Pf02, Pf03, Pf04 e Pf05, o trecho de praia (areia) se torna muito pequeno e no perfil Pf04 quase inexistente. Além disso, os perfis Pf01 e Pf03 possuem pequena variação sazonal. Isto pode ser justificado por se tratar de praias influenciadas diretamente pela desembocadura do estuário.

Pode ser entendido, pelos perfis topográficos que ocorre erosão ao longo de quase todo perfil praial, que há uma tendência maior de processos erosivos, que mesmo em perfis de tempo bom, não há presença da formação de Berna mais desenvolvida e não ocorre variação sazonal natural no ambiente, exceto nos Pf06. O perfil Pf06 (ponto P01), foi o único perfil que demonstrou uma praia de tempo bom, com processos sazonais de acordo com a morfodinâmica praial e regime de impacto de transposição, o qual ao longo do ano possui capacidade de acresção ainda após os ciclos sazonais.

Figura 7 – Perfil (Pf01) de praia entre agosto de 2020 e dezembro de 2021.

Figura 8 - Perfil (Pf02) de praia entre agosto de 2020 e dezembro de 2021.

Fonte: Prefeitura de Itapoá (2022).

Figura 9 - Perfil (Pf03) de praia entre agosto de 2020 e dezembro de 2021.

4

30

Fonte: Prefeitura de Itapoá (2022).

Figura 11 - Perfil (Pf05) de praia entre agosto de 2020 e dezembro de 2021.

Fonte: Prefeitura de Itapoá (2022).

Fonte: Komar (1976).

4.2 Vulnerabilidade Costeira

Para análise do Índice de Vulnerabilidade Costeira foram utilizados os índices baseados no estudo de Perinotto *et al.* (2012). As praias foram divididas em 9 pontos descritos a seguir: P1 - Barra do Saí (divisa de estado ao norte); P2 - Central; P3- Itapema do Norte; P4 – Primeira Pedra e Segunda Pedra; P5 - Prefeitura; P6 – Bombeiros; P7 – Uirapuru; P8 – Pontal Norte; P9 – Pontal (limite da cidade ao sul com a baía da Babitonga).

Conforme o quadro 3 podem ser observadas as pontuações obtidas em cada ponto determinado e seus respectivos cálculos e, com as somas finais, pode-se obter o padrão erosional de cada ponto. Foram encontrados a partir dessa análise, 2 pontos de estabilidade (P01 e P04), 4 pontos com erosão (P02, P05, P07 e P08), e 3 pontos com erosão severa (P03, P06 e P09). Pode ser observado no quadro 3 as pontuações das características individuais de cada ponto para obtenção da soma final. Nos pontos que apresentaram erosão severa, a erosão encontra-se em estado avançado (com exceção do ponto P09), com a presença de muitos enrocamentos rochosos, como medida de contenção para não destruir as casas ao entorno (Quadro 3). Nos pontos com resultado de erosão, a erosão pode ser observada em trechos pontuais. Já os pontos que apresentaram estabilidade possuem leve estabilidade, assim como quase não ocorre a presença de dunas bem estabelecidas.

INDICADOR	1.1	1.2	1.3	1.4	1.5	1.6	2.1	2.2	2.3	2.4	2.5	3.1	3.2	3.3	A	ado do nal
PESO	2	2	2	4	2	2	1	1	1	2	2	-2	-2	-2	Som	Result Estac Erosic
Local/ Pontos	indicadores de erosão severa					indicadores de erosão				estabilidade						
P 01								1				-2	-2	-2	-5	Estabilidade
P 02							1	1					-2	-2	-2	Erosão
P 03	2	2	2	4							2	-2			10	Erosão severa
P 04													-2		-2	Estabilidade
P 05								1			2				3	Erosão
P 06	2	2	2	4							2				12	Erosão severa
P 07		2				2			1		2	-2	-2		3	Erosão
P 08		2					1		1	2	2	-2	-2		4	Erosão
P 09		2	2			2			1	2	2				11	Erosão severa

Quadro 3 - Resultado da caracterização do estado erosional dos 9 pontos de praia

FONTE: O autor (2022), adaptado de Perinotto (2012).

4.3 Balanço Hidrodinâmico

Através da modelagem foi possível identificar e confirmar os padrões hidrodinâmicos locais e da Baía da Babitonga, a qual representa uma das forçantes principais que influenciam nos padrões hidrodinâmicos da região.

Ao longo das 4 estações do ano (verão, outono, inverno e primavera), as forçantes hidrodinâmicas da deriva litorânea e vazão da Baía da Babitonga possuem uma tendência de direção conforme as descargas fluviais, do volume de precipitação e ação da maré, assim como a deriva litorânea tem sua direção conforme a predominância no padrão de ventos da região, o qual variaram conformes as estações do ano. Na figura 14, pode ser observado o padrão de ventos para o mesmo período da análise hidrodinâmica. Os ventos na região no ano de 2021 possuiu maior tendência de direção a nordeste e sudoeste (ENE-OSO). A distribuição de velocidades resultou em 4,3% foram de períodos de calmaria e 0,7% representaram velocidades de 0,50 até 2,10 m/s, 0,4% foram de ventos com velocidades de 2,10 até 3,60 m/s e 0,1%, ou menos, representaram os ventos de 3,60 até 8,80 m/s (Fig. 15). A velocidade média do vento neste período de 2021 foi de 0.48 m/s.

Figura 14 - Resultado Frequência dos Ventos no ano de 2021.

Fonte: O Autor (2023).

Na maioria do tempo a tendência hidrodinâmica acontece em ENE-OSO e durante o outono e inverno é quando podem ocorrer mudanças de direção com tendência a sul.

As forças de maré vazante e maré enchente na Baía da Babitonga atuam com uma velocidade de até 1,4 m/s e com variação de nível de aproximadamente até 2,0 m. No verão (Fig. 16 e 17), a tendência de velocidade variou entre 0,0 a 1,2 m/s e na velocidade da vazão entre 1,0 a 1,2 m/s, já o nível varia entre 0,2 m a 1,5 m. No outono (Fig. 18 e 19), a tendência de velocidade varia entre 0,0 a 0,8 m/s e na velocidade da vazão entre 0,6 a 0,8 m/s, já o nível varia entre 0,5 m a 1,5 m. No inverno (Fig. 20 e 21), a tendência de velocidade varia entre 0,0 a 1,2 m/s, já o nível varia entre 0,0 a 1,2 m/s e na velocidade da vazão entre 0,6 a 1,2 m/s, já o nível varia entre 0,0 a 1,2 m/s e na velocidade da vazão entre 0,6 a 1,2 m/s, já o nível varia entre 0,0 a 1,2 m/s e na velocidade da vazão entre 0,6 a 1,2 m/s, já o nível varia entre 0,0 a 1,2 m/s e na velocidade da vazão entre 0,6 a 1,2 m/s, já o nível varia entre 0,0 a 0,8 m/s e na velocidade da vazão entre 0,6 a 1,2 m/s, já o nível varia entre 0,0 a 0,8 m/s e na velocidade da vazão entre 0,6 a 1,2 m/s, já o nível varia entre 0,0 a 0,8 m/s e na velocidade da vazão entre 0,4 a 1,4 m/s, já o nível varia entre 0,5 m a 2,0 m. O nível do mar possuiu uma variação ao longo dos meses entre 0,5 e 2,0 m, o qual variou mais no setor da baia da Babitonga e na zona do canal frequentemente dragado. Ao longo das estações do ano, a tendência hidrodinâmica na maré vazante, o curso da água segue com o padrão normal da região da Baía em sentido norte, que acompanha o padrão da direção da deriva litorânea da região.

Figura 16 - Velocidade em um dia de Verão.

Figura 18 - Velocidade em um dia de Outono.

Fonte: O Autor (2022); Dados Programa BSO 2021

Figura 22 - Velocidade em um dia de Primavera.

Fonte: O Autor (2022); Dados Programa BSO 2021

Figura 23 - Variação de Nível em um dia de Primavera.

4.4 Mudanças na Linha de Costa

A partir do geoprocessamento de dados de satélites foram obtidas as variações da linha de costa ao longo dos anos de 1985 a 2022 (ANEXOS 13 a 50). Foram escolhidas duas imagens de cada ano 1985, 1995, 2005, 2015 e 2022 para análise DSAS (Fig. 24). As imagens de satélite foram cuidadosamente escolhidas a partir de imagens que não tivessem muitas nuvens, porque as nuvens podem atrapalhar, devido o contraste das cores serem muito importantes nas análises. O sistema identificou 102 imagens no total, que tinham até 2,5% da presença de nuvens, a partir dessa primeira análise as 20 imagens foram escolhidas manualmente para conferência e, também não ocorrer nenhum erro. Mas como trabalhou-se com imagens de satélites antigas, deve-se conferir cada ponto de outliers nos dados com a finalidade de verificação de possíveis erros da análise. Figura 24 - Imagens do Satélite LandSat com corte específico para Análise de Variação da Linha de Costa de Itapoá ao longo dos anos de 1985, 1995, 2005, 2015 e 2022. A - 1985 (05-09/07/1985 às 12:41); B - 1985 (30/09/1985 às 12:31); C - 1995 - (16/04/1995 às 12:20); D - 1995 (18/05/1995 às 12:18); F - 2005 (02/09/2005 às 12:59); G - 2005 (05/11/2005 às 12:59); H - 2015 (09/05/2015 às 13:10); I - 2015 (10/06/2015 às 13:10); J - 2022 (12/05/2022 às 13:11); K - 2022 (20/05/2022 13:10).

Fonte: O Autor (2022).

Conforme análise DSAS das praias de Itapoá, a taxa de variação ao longo do período de 1985 a 2022 foram observadas para todos os 284 transectos obtidos na análise (Fig. 25). As cores dos transectos representam a maior tendência daquele determinado ponto: Verde - estável; Azul - Acresção; Amarelo - Erosão; Vermelho - Erosão Crítica. Já as linhas representam os anos ao longo de 1985 a 2022 da análise: 1985 (vermelha/ alaranjado); 1995 (amarelo queimado/amarelo neon); 2005 (verdes); 2015 (azuis turquesa); 2022 (azuis); Linha de Base (azul pastel).

Os resultados dos transectos ao longo da linha de costa de Itapoá demonstraram padrões muito próximos da caracterização do perfil praial. Foram evidenciados nos resultados dos transectos ao longo dos anos que os estados erosionais mais intensos estão localizados nos pontos P03, P06, P07 e P08. Nos pontos P01 e P02 foram observados perfis estáveis e/ou contendo acresção. Os pontos P05 e P09 apresentaram estabilidade em todo seu perfil. Os detalhes dos transectos podem ser observados nas figuras de 25 a 31.

TRANSECTOS

1985 a 2022

1985 b 2022

1985 a 2022
</t

Figura 25 - Resultado dos 284 Transectos obtidos a partir da análise da Taxa de Variação da Linha de Costa.

No quadro 4 pode-se verificar a representação do mínimo, máximo, média e o

desvio padrão das taxas anuais de variação para cada ponto entre os anos de 1985 e 2022. Os números negativos podem representar estabilidade ou perda de areia ao longo dos anos e os números positivos podem representar estabilidade e ou ganho de areia ao longo dos anos. As médias ao longo de cada ponto demonstraram que os pontos P01 e P09 sofreram acresção ao longo dos anos; o ponto P02 demonstrou estabilidade, apesar da média ser negativa e o máximo e o mínimo serem próximos; o ponto P04 também apresentou estabilidade; o ponto P05, apesar de média negativa, o mínimo e máximo variaram pouco e a partir dessas análises o ponto foi caracterizado por estabilidade. Já os pontos P03, P06, P07 e P08 demonstraram erosão com taxas altas de perda de sedimento ao longo dos anos. A maior variação dos pontos de acordo com o desvio padrão dos transectos foram no P01(acresção), no P03 (erosão) e no P08 (erosão) ao longo dos anos de 1985 a 2022.

Os dados brutos de todos os transectos podem ser encontrados nas tabelas presentes nos ANEXOS 52 ao 60.

RESULTADO DA TAXA DE ALTERAÇÃO - LRR											
TOTAIS	PONTO	N° TRANSECTOS	MÍNIMO	MÁXIMO	MÉDIA	DESVP					
	P01	43	-0,0954	6.264	698,40	1567,10					
	P02	42	-0,0015	0,4702	-0,1000	0,2353					
	P03	20	-7.2010	0,0000	-1075,00	1641,80					
	P04	12	-0,0991	0,9524	0,21515	0,4066					
	P05	27	-0,0999	0,5601	-0,10361	0,2200					
	P06	42	-1.571	0,9946	-179,33	451,60					
	P07	37	-2.710	-0,1130	-1099,02	992,90					
	P08	18	-3.060	-0,0581	-1480,05	1119,80					
	P09	43	-0,0084	4.680	108,78	713,60					
	9 pontos	284 transectos	Resultados de LRR em m/ano								
	OBS. Foram desconsiderados locais de desembocadura.										

Quadro 4 - Mínimo, máximo e médias verdadeiras das taxas de variação para cada ponto em metros. Obs. os possíveis outliers foram retirados da análise para que as taxas de alteração comparados com a erosão e não com outros processos sazonais do ambiente.

Fonte: O autor (2023).

O ponto **P01** (Fig. 26) com 43 locais (transectos) demonstrou-se estável em 26 locais e com um trecho de 16 locais em Acresção ao longo de todo percurso, variando apenas no trecho de desembocadura do Rio Saí Mirim. No ponto **P02** (Fig. 27), foram identificados 42 locais (transectos) que demonstraram locais Estáveis, no entanto obteve mínimos negativos, o qual representa uma saída de sedimento. Todavia, como a análise é

sobre a taxa de variação, mesmo com saídas de sedimento, essas saídas demonstram pequenas mudanças ou mudanças sazonais ao longo do período. O ponto P03 (Fig. 28), já foi caracterizado por taxas de variação negativas maiores, representando um ponto com 20 locais (transectos), o qual 11 locais identificaram Erosão Crítica, 7 locais de Erosão e, 2 locais que demonstraram estável. O ponto P04 (Fig. 28) foi caracterizado por 12 locais (transectos), os quais 8 se demonstraram estável, 3 em acresção e 1 local em erosão crítica, esse último representa áreas de outliers. O ponto P05 (Fig. 29) foi determinado por 27 locais (transectos), os quais 26 locais demonstram-se estáveis e 1 local em acresção. O ponto P06 (Fig. 30) é representado por 42 locais (transectos), o qual representa o ponto onde mais variou os estágios da erosão, com 9 locais estáveis, 1 local em acresção, 26 locais em estado de erosão e 6 locais em estado de erosão crítica. O ponto **P07** (Fig. 31) demonstrou-se como o ponto com mais trecho de erosão dos 37 locais (transectos) com 22 locais em erosão crítica, 9 em estado de erosão e 6 locais estáveis. O Ponto P08 (Fig. 31) com 18 locais (transectos), sendo 3 locais estáveis, 2 locais em erosão e 13 locais em erosão crítica. O ponto P09 (Fig. 31) foram 43 locais (transectos), com 40 locais em estado estável e 3 locais em acresção.

Figura 26 - Resultado dos 43 transectos obtidos do PONTO 01.

Figura 28 - Resultado dos 20 transectos obtidos do PONTO 03 e 12 transectos obtidos no PONTO 04.

Figura 27 - Resultado dos 42 transectos obtidos do PONTO 02.

Figura 29 - Resultado dos 27 transectos obtidos do PONTO 05.

Figura 30 - Resultado dos 42 transectos obtidos do PONTO 06.

Figura 31 - Resultado dos 37 transectos obtidos do PONTO 07, 18 transectos obtidos do PONTO 08 e 43 transectos obtidos do PONTO 09.

Como observado na figura 32, os locais com proximidade de desembocadura não foram considerados como pontos em erosão, devido a dinâmica sazonal que frequentemente acontece nestes ambientes. A taxa de variação nestes locais é maior e poderia ser considerada como taxa erosional, porém, não necessariamente demonstram estados erosionais. Na figura 33 pode-se observar na linha de 1985 (alaranjada) uma variação bem distinta no ponto **P02**, o qual não representa um outliers. Em 1985, aquela região representava a linha de costa como pode ser observado na imagem de satélite deste ano (Fig. 24). Já na figura 34, pode-se entender que no ponto **P04** o transecto que mostra o local de erosão crítica, representa um pontal rochoso, o qual foi desconsiderado na análise. Na figura 35, nota-se o ponto **P05** com maior estabilidade ao longo do perfil numa escala menor, para melhora na visualização. Nas figuras 36 e 37, também possuem resultados ampliados para que seja visto a variação nos pontos **P06, P07** e **P08** com maior ampliação. Os demais resultados dos transectos podem ser vistos no ANEXO 51.

Figura 33 - Transectos Ponto 02

Figura 35 - Transectos Ponto 05

Figura 37 - Transectos Ponto 07 e 08

A partir da análise visual alguns transectos por ponto foram escolhidos para apresentação dos dados individuais de maior relevância (Fig. 38 a 63). Devido a área de estudo ser extensa, não seria possível explanar os resultados de todos os 284 transectos obtidos nesta pesquisa. Por isso, a escolha dos transectos baseou-se na predominância nos resultados de cada ponto, por exemplo, no ponto P02 obteve resultado de "estável" na maioria dos perfis, por isso, os gráficos foram realizados desses transectos para demonstrar e obter melhor visualização.

Figura 38 - Gráfico de taxa de variação ao longo dos anos no Ponto 01. Taxa de alteração (LRR): 0.0736 m/ano; Coeficiente de correlação (r): 0.5701; SCE: 1.0405m; NSM: 0.0000m; EPR: 0.0000 m/ano. Classificação: Estável

Figura 39 Gráfico de taxa de variação ao longo dos anos no Ponto 01. Taxa de alteração (LRR): 0.0736 m/ano; Coeficiente de correlação (r): 0.5701; SCE: 1.0405m; NSM: 0.0000m; EPR: 0.0000 m/ano. Classificação: Estável

Figura 40 - Gráficos de taxa de variação do Ponto 02 ao longo dos anos. Taxa de alteração (LRR): -0.1178 m/ano; Coeficiente de correlação (r): -0.2767; SCE: 23.1706m; NSM: -7.3701m; EPR: -0.1999 m/ano. Classificação: Estável

Figura 41 - Gráficos de taxa de variação do Ponto 02 ao longo dos anos. Taxa de alteração (LRR): 0.1076 m/ano; Coeficiente de correlação (r): 0.4004; SCE: 12.2477m; NSM: 8.2561m; EPR: 0.2240 m/ano. Classificação: Estável

Figura 42 - Gráficos de taxa de variação do Ponto 03 ao longo dos anos. Taxa de alteração (LRR): -1.2416 m/ano; Coeficiente de correlação (r): -0.8111; SCE: 76.2294m; NSM: -28.5193m; EPR: -0.7737 m/ano. Classificação: Erosão Crítica

Figura 43 - Gráficos de taxa de variação do Ponto 03 ao longo dos anos. Taxa de alteração (LRR): -4.5012 m/ano; Coeficiente de correlação (r): -0.7876; SCE: 212.8787m; NSM: -212.8787m; EPR: -5.7748 m/ano. Classificação: Erosão Crítica

Figura 44 - Gráficos de taxa de variação do Ponto 03 ao longo dos anos. Taxa de alteração (LRR): -1.3400 m/ano; Coeficiente de correlação (r): -0.8096; SCE: 64.0415m; NSM: -64.0415m; EPR -1.7373 m/ano. Classificação: Erosão Crítica.

Figura 45 - Gráficos de taxa de variação do Ponto 04 ao longo dos anos. Taxa de alteração (LRR): 0.2081 m/ano; Coeficiente de correlação (r): 0.2252; SCE: 42.4790 m; NSM: 10.9443m; EPR: 0.2969 m/ano. Classificação: Estável

Figura 46 - Gráficos de taxa de variação do Ponto 04 ao longo dos anos. Taxa de alteração (LRR): 0.9443 m/ano; Coeficiente de correlação (r): 0.6245; SCE: 69.4944m; NSM: 29.1275m; EPR: 0.7901 m/ano. Classificação: Acresção

Figura 47 - Gráficos de taxa de variação do Ponto 05 ao longo dos anos. Taxa de alteração (LRR): 0.5601 m/ano; Coeficiente de correlação (r): 0.4525; SCE: 37.1460m; NSM: 35.6094m; EPR: 0.9660 m/ano. Classificação: Acresção

Figura 48 - Gráficos de taxa de variação do Ponto 05 ao longo dos anos. Taxa de alteração (LRR): -0.2580 m/ano; Coeficiente de correlação (r): -0.1456; SCE: 26.5546m; NSM: -14.7803m; EPR: -0.4010 m/ano. Classificação: Estável

Figura 49 - Gráficos de taxa de variação do Ponto 05 ao longo dos anos. Taxa de alteração (LRR): -0.2572 m/ano; Coeficiente de correlação (r): -0.4239; SCE: 29.5478m; NSM: -3.2912m; EPR: -0.0893 m/ano. Classificação: Estável

Figura 50 - Gráficos de taxa de variação do Ponto 06 ao longo dos anos. Taxa de alteração (LRR): -0.6428 m/ano; Coeficiente de correlação (r): -0.7047; SCE: 32.3307m; NSM: -19.7391m; EPR: -0.5355 m/ano. Classificação: Erosão

Figura 51 - Gráficos de taxa de variação do Ponto 06 ao longo dos anos. Taxa de alteração (LRR): -1.3635 m/ano; Coeficiente de correlação (r): -0.8914; SCE: 72.7184m; NSM: -62.3445m; EPR: -1.6912 m/ano. Classificação: Erosão Crítica

Figura 52 - Gráficos de taxa de variação do Ponto 06 ao longo dos anos. Taxa de alteração (LRR): -0.7657 m/ano; Coeficiente de correlação (r): -0.7785; SCE: 40.0601m; NSM: -23.0723m; EPR: -0.6259 m/ano. Classificação: Erosão

Figura 53 - Gráficos de taxa de variação do Ponto 06 ao longo dos anos. Taxa de alteração (LRR): -0.4498 m/ano; Coeficiente de correlação (r): -0.7535; SCE: 25.2928m; NSM: -10.5597m; EPR: -0.2865 m/ano. Classificação: Estável

Figura 54 - Gráficos de taxa de variação do Ponto 07 ao longo dos anos. Taxa de alteração (LRR): -0.1041 m/ano; Coeficiente de correlação (r): -0.1769; SCE: 24.1019m; NSM: -12.4314m; EPR: -0.3372 m/ano. Classificação: Estável

Figura 55 - Gráficos de taxa de variação do Ponto 07 ao longo dos anos. Taxa de alteração (LRR): -0.9530 m/ano; Coeficiente de correlação (r): -0.9022; SCE: 38.5797m; NSM: -37.1152m; EPR: -1.0068 m/ano. Classificação: Erosão

Figura 56 - Gráficos de taxa de variação do Ponto 07 ao longo dos anos. Taxa de alteração (LRR): -2.7104 m/ano; Coeficiente de correlação (r): -0.9754; SCE: 119.1171m; NSM: -119.1171m; EPR: -3.2313 m/ano. Classificação: Erosão Crítica

Figura 57- Gráficos de taxa de variação do Ponto 08 ao longo dos anos. Taxa de alteração (LRR): -0.0581 m/ano; Coeficiente de correlação (r): -0.0751; SCE: 36.163 m; NSM: 9.8816m; EPR: 0.2681 m/ano. Classificação: Estável

Figura 58 - Gráficos de taxa de variação do Ponto 08 ao longo dos anos. Taxa de alteração (LRR): -2.8967 m/ano; Coeficiente de correlação (r): -0.9351; SCE: 138.697 m; NSM: -110.9344m; EPR: -3.0093 m/ano. Classificação: Erosão

Figura 59 - Gráficos de taxa de variação do Ponto 08 ao longo dos anos. Taxa de alteração (LRR): -3.0597 m/ano; Coeficiente de correlação (r): -0.9382; SCE: 121.0211m; NSM: -108.3266m; EPR: -2.9386 m/ano. Classificação: Erosão Crítica

Figura 60 - Gráficos de taxa de variação do Ponto 08 ao longo dos anos. Taxa de alteração (LRR): -0.7827 m/ano; Coeficiente de correlação (r): -0.8215; SCE: 43.4281m; NSM: -32.5452m; EPR: -0.8829 m/ano. Classificação: Erosão

Figura 61 - Gráficos de taxa de variação do Ponto 09 ao longo dos anos. Taxa de alteração (LRR): 0.5208 m/ano; Coeficiente de correlação (r): 0.4730; SCE: 50.3735m; NSM: 0.0000; m EPR: 0.0000 m/ano. Classificação: Acresção

Figura 62 - Gráficos de taxa de variação do Ponto 09 ao longo dos anos. Taxa de alteração (LRR): -0.2914 m/ano; Coeficiente de correlação (r): -0.7508; SCE: 13.5173m; NSM: -13.5173m; EPR: -0.3667 m/ano. Classificação: Estável

Figura 63 - Gráficos de taxa de variação do Ponto 09 ao longo dos anos. Taxa de alteração (LRR): 0.2360 m/ano; Coeficiente de correlação (r): 0.5311; SCE: 16.0135m; NSM: 16.0135m; EPR: 0.4344 m/ano. Classificação: Estável

4.5 Extremos Climáticos

4.5.1 Padrão de Ventos

A partir da análise de frequência dos ventos do período de 2007 a 2022 (Fig. 64) pode ser observado uma maior tendência na direção do vento para OSO-ENE (quadrantes Leste-Oeste). As classes de tendência de distribuição do vento podem ser analisadas conforme figura 65, o qual 34,7% representaram períodos de calmaria, 22,3% com ventos de 0,50 a 2,10 m/s, 11,8% com ventos de 2,10 a 3,60 m/s, 3,1% foram ventos entre 3,60 e 5,70 m/s e 0,1% ventos entre 5,70 e 8,80 m/s. A velocidade média do vento foi de 1,0 m/s para este período analisado.

Figura 64 - Análise de Frequência dos Ventos no Período de 2007 a 2022. A Soprando de OSO; B – Soprando para ENE;

Fonte: O autor, 2023.

Figura 65 - Classes de Frequência de Distribuição dos Ventos no Período de 2007 a 2022.

4.5.2 Correlação do Ventos e Maré

A partir dos dados das componentes do vento (u e v) e velocidade do vento, assim como a maré observada, a maré meteorológica e a maré astronômica foram testadas a partir da normalidade do teste de Anderson Darling, o qual as séries de dados se demonstraram não normais com P-valores menores que 0,05 para todas as séries de dados: velocidade do vento (A = 20793, p-valor < 2.2e-16); componente u (A = 20794, p-valor < 2.2e-16); componente v (A = 20748, p-valor < 2.2e-16); maré astronômica (A = 91.547, p- valor < 2.2e-16); maré observada (A = 91.547, p- valor < 2.2e-16); maré meteorológica (A = 27.5, p- valor < 2.2e-16). Devido a não normalidade dos dados, então prosseguiu-se para o Coeficiente de Correlação de Postos de Spearman. A correlação mais representativa entre os dados foram os dados de maré astronômica correlacionado com a velocidade do vento com Rho de 0,056 e p - valor de 0,00, as demais correlações foram opostas ou não puderam ser utilizadas na análise pelo valor-p muito alto. Entretanto, os dados de velocidade do vento foram separados por quadrantes e reduzidos as séries de maré em percentil 80, para utilizar somente os 20% dos dados mais extremos, mas ainda assim não foi possível obter um resultado conclusivo para esta análise. Por isso, entende-se que mesmo utilizando a série de maré astronômica e velocidade, os quais foram mais representativos não há correlação entre esses dados mesmo após sua filtragem.

Na frequência dos ventos do período de 2014 a 2022 (Fig. 66) pode ser observado uma maior tendência na direção do vento OSO-ENE (quadrantes leste-oeste), a mesma registrada no período de 2007 a 2022. As classes de tendência de distribuição do vento podem ser analisadas conforme figura 67, o qual 40,3% representaram períodos de calmaria, 22,4% com ventos de 0,50 a 2,10 m/s, 10,3% com ventos de 2,10 a 3,60 m/s, 2,3% foram ventos entre 3,60 e 5,70 m/s; 0,1% foram entre 5,70 e 8,80 m/s e menos que 0% de ventos até 11,10 m/s. A velocidade média do vento foi de 0,84 m/s para este período analisado.

Figura 66 - Padrão de Frequência dos Ventos do Período de 2014 a 2022. A – Soprando de SO; B - Soprando para NE.

Fonte: O autor (2023).

4.5.3 Decretações de Desastres

A partir dos dados da Defesa Civil do Estado de Santa Catarina foi possível identificar 15 eventos potenciais de erosão costeira na cidade de Itapoá entre 1998 a 2020. No total para região nordeste do estado foram de 133 decretações com uma crescente nos anos de 2007 a 2011 e nos municípios litorâneos da região nordeste obtiveram: SFS 14 desastres; Barra do Sul 26 desastres e Barra Velha 20 desastres (Fig. 68).

Em Itapoá, no período de 1998 a 2020, 67% dos eventos são referentes à Enxurradas e 26% representam problemas direto com a erosão costeira (Fig. 69) e durante os anos de 2008 a 2011 foi identificado o dobro dos eventos, comparado aos demais anos (Fig. 70). Nota-se que para todos os municípios da região nordeste de Santa Catarina, entre 2008 e 2011, ocorreu uma crescente no número de registros de eventos que geraram algum desastre (Fig. 71). As tabelas com todos os dados individuais, para cada decreto, podem ser vistas no ANEXO 61.

Figura 68 - Mapa dos munícipios analisados no estado de Santa Catarina e as Decretações de Desastres para os municípios nordeste de Santa Catarina entre os anos de 1998 a 2020.

Fonte: O autor (2023).

Figura 69 - Tipo de desastres que aconteceram em Itapoá entre 1998 e 2020.

Fonte: O autor (2023).

Figura 70 - Quantidade de desastres que aconteceram em Itapoá entre 1998 e 2020 por ano.

Figura 71 - Quantidade de desastres que aconteceram na Região Nordeste representada entre 1998 e

Fonte: O autor (2023).

4.5.3.1 Padrão de Ventos e associação as Decretações de Itapoá

A partir das datas dos decretos (possíveis eventos climáticos) estabeleceu-se o padrão de distribuição dos ventos para cada período desses eventos. Em 2008, o período que ocorreu as decretações no mês janeiro e no mês de novembro, representavam as fases da lua de quadratura. Neste período em 2008, a direção predominante dos ventos era no quadrante ENE-OSO (quadrantes Leste-Oeste) (Fig. 72 – A e B) e com velocidades máximas de 8,7 m/s e 10 m/s, respectivamente (Fig. 73). Em 2009, nos meses de fevereiro e junho representavam as fases da lua de quadratura e sizígia, respectivamente. Já os padrões de ventos predominantes foram de SO-ENE (quadrantes Leste-Oeste, com tendência ao norte) para o período do decreto em fevereiro e para junho foi SSO-NNE (quadrantes mais favoráveis de sul para norte) (Fig. 72 – C e D, respectivamente) e com

velocidades máximas de 11,9 m/s e 6,5 m/s, respectivamente (Fig. 73). Em 2010, a fase da lua estava em período de quadratura e os ventos predominantes para o período foram de SSO-NNE (quadrantes de sul para norte) (Fig. 72 - E) e velocidade máximas de 14,9 m/s (Fig. 74). Já em 2011, a fase da lua estava em período de sizígia e os ventos predominantes para o período variaram entre SO-NE e de NE-SO (variou bastante no quadrante Leste-Oeste) (Fig. 72 - F) e velocidades máximas de 16,2 m/s (Fig. 74). No período dos desastres em 2013, a fase da lua era de quadratura e velocidades máximas de 8,9 m/s (Fig. 75). No período do desastre em 2018, a fase da lua também estava em quadratura e os ventos predominantes foram de OSO-ENE (quadrante Leste-Oeste) (Fig. 72 – G) e velocidades máximas de 7,7 m/s (Fig. 75). No período do desastre em 2020, a fase da lua estava indo de quadratura para sizígia e os ventos predominantes ENE-OSO (quadrante Leste-Oeste) (Fig. 72 – H) e velocidades máximas de 13,4 m/s (Fig. 76). Nas figuras de 73 a 76, pode se observar os resultados das rajadas de vento ao longo dos anos de 2008, 2009, 2010, 2011, 2018, 2020. Os demais anos dos desastres não puderam ser analisados pela ausência de dados. Os dados de distribuição do vento para o período dos eventos em 2013 não foram possíveis serem apresentados, devido a erro na série de dados de direção o vento.

Figura 72 - Padrão de Ventos. A e B- 2008; C e D -2009; E- 2010; F- 2011; G- 2018; H- 2018.

Fonte: O autor (2023).

	Rajada de Ventos - 2008	Rajadas de Vento - 2009			
01/01/2008		01/01/2009			
06/01/2008		06/01/2009			
12/01/2008		11/01/2009			
17/01/2008		17/01/2009			
23/01/2008		22/01/2009			
28/01/2008		28/01/2009			
08/02/2008		08/02/2009			
14/02/2008		13/02/2009			
19/02/2008		19/02/2009			
25/02/2008		24/02/2009			
01/03/2008		02/03/2009			
07/03/2008		07/03/2009			
12/03/2008		12/03/2009			
18/03/2008		18/03/2009			
20/03/2008		29/03/2009			
03/04/2008		03/04/2009			
09/04/2008		09/04/2009			
14/04/2008		14/04/2009			
20/04/2008		20/04/2009			
25/04/2008		25/04/2009			
01/05/2008		01/05/2009			
06/05/2008		12/05/2009			
12/05/2008		12/05/2009			
17/05/2008		22/05/2009			
28/05/2008		28/05/2009			
03/06/2008		02/06/2009			
08/06/2008		08/06/2009			
14/06/2008		13/06/2009			
19/06/2008		19/06/2009			
25/06/2008		24/06/2009			
30/06/2008		05/07/2009			
06/07/2008		11/07/2009			
17/07/2008		16/07/2009			
22/07/2008		21/07/2009			
28/07/2008		27/07/2009			
02/08/2008		01/08/2009			
08/08/2008		07/08/2009			
13/08/2008		12/08/2009			
19/08/2008		23/08/2009			
24/08/2008		29/08/2009			
30/08/2008		03/09/2009			
10/09/2008		09/09/2009			
15/09/2008		14/09/2009			
21/09/2008		20/09/2009			
26/09/2008		25/09/2009			
02/10/2008		06/10/2009			
07/10/2008		11/10/2009			
13/10/2008		17/10/2009			
18/10/2008		22/10/2009			
29/10/2008		28/10/2009			
04/11/2008		02/11/2009			
09/11/2008		08/11/2009			
15/11/2008		19/11/2009			
20/11/2008		24/11/2009			
26/11/2008		29/11/2009			
01/12/2008		05/12/2009			
12/12/2008		10/12/2009			
18/12/2008		16/12/2009			
23/12/2008		21/12/2009			
de la					

Figura 73 - Rajada de Vento (m/s) 2008 e 2009.

Fonte: O autor (2023).

	Rajada de Vento - 2010	Rajada de Vento - 2011		
01/01/2010		01/01/2011		
06/01/2010		06/01/2011		
11/01/2010		11/01/2011		
17/01/2010		17/01/2011		
22/01/2010		22/01/2011		
27/01/2010		27/01/2011		
07/02/2010		07/02/2011		
13/02/2010		13/02/2011		
18/02/2010		18/02/2011		
23/02/2010		23/02/2011		
01/03/2010		01/03/2011		
06/03/2010		06/03/2011		
17/03/2010		17/03/2011		
22/03/2010		22/03/2011		
28/03/2010		28/03/2011		
02/04/2010		02/04/2011		
07/04/2010		07/04/2011		
13/04/2010		13/04/2011		
18/04/2010		18/04/2011		
23/04/2010		23/04/2011		
29/04/2010		29/04/2011		
10/05/2010		10/05/2011		
15/05/2010		15/05/2011		
20/05/2010		20/05/2011		
26/05/2010		26/05/2011		
31/05/2010		31/05/2011		
05/06/2010		05/06/2011		
11/06/2010		11/06/2011		
22/06/2010		22/06/2011		
27/06/2010		27/06/2011		
02/07/2010		02/07/2011		
08/07/2010		08/07/2011		
13/07/2010		13/07/2011		
18/07/2010		18/07/2011		
24/07/2010		24/07/2011		
04/08/2010		04/08/2011		
09/08/2010		09/08/2011		
14/08/2010		14/08/2011		
20/08/2010		20/08/2011		
25/08/2010		25/08/2011		
30/08/2010		30/08/2011		
10/09/2010		10/09/2011		
16/09/2010		16/09/2011		
21/09/2010		21/09/2011		
26/09/2010		26/09/2011		
02/10/2010		02/10/2011		
07/10/2010		07/10/2011		
12/10/2010		12/10/2011		
23/10/2010		23/10/2011		
29/10/2010		29/10/2011		
03/11/2010		03/11/2011		
08/11/2010		08/11/2011		
14/11/2010		14/11/2011		
19/11/2010		19/11/2011		
24/11/2010		24/11/2011		
05/12/2010		05/12/2011		
11/12/2010		11/12/2011		
16/12/2010		16/12/2011		
21/12/2010		21/12/2011		
27/12/2010		27/12/2011		
			and the second	

Figura 74 - Rajada de Vento (m/s) 2010 e 2011.

Fonte: O autor (2023).

Rajada de Vento - 2018

Fonte: O autor (2023).

Rajada de Vento - 2020

Fonte: O autor (2023).

5. DISCUSSÃO

O fato de que a caracterização realizada pelo Índice de Vulnerabilidade Costeira-IVC e pelos Perfis Topográficos apresentou resultados semelhantes entre si e aos observados *in situ* é uma constatação extremamente satisfatória, pois indica que as metodologias empregadas foram eficazes na avaliação da vulnerabilidade costeira da região em estudo. A análise *in situ* é uma análise direta e detalhada realizada na área de interesse, enquanto as metodologias utilizadas no estudo podem ser consideradas análises indiretas e, quando unidas obtém resultados semelhantes e fornecem maior confiabilidade aos dados.

Na análise DSAS, alguns pontos demonstram padrões diferenciados das demais análises, no entanto a análise DSAS demonstrou a evolução da vulnerabilidade aos longos das quase 4 décadas analisadas, já o IVC e os Perfis Topográficos analisaram o padrão de erosão que atualmente acontece em Itapoá. Os pontos P01, P03, P04 e P06 demonstram os mesmos padrões sedimentares, tanto ao longo das décadas, quando ao que se encontra atualmente, ou seja, o P01 e P04, encontram-se estáveis ao longo dos anos e alguns locais em acresção. No P01 alguns transectos resultaram em taxas muito altas de padrão de acresção e, isso ocorre pela influência das desembocaduras do Rio Saí-Guaçu e Rio Saí-Mirim, o qual conforme a sazonalidade podem ser alteradas na posição de desague e influenciar diretamente nas análises, mesmo assim a região encontra-se estável. No P03 e no P06, ao longo dos anos o padrão foi de erosão severa e mantém os padrões atualmente. Já os pontos P02, P05, P07, P08 e P09 obtiveram padrões diferenciados ao longo dos anos, comparados aos dias atuais. No P02 e no P05, é possível observar sinais de erosão em diferentes áreas. No entanto, mesmo que essa erosão ainda esteja presente atualmente, as análises ao longo dos anos indicam que não houve progressão significativa desse processo. Dessa forma, o padrão de erosão nesse ponto parece estar estável ao longo do tempo. No ponto P07 e P08, na análise IVC foi constatado erosão em muitos locais, mas na análise DSAS estes pontos representaram estado de erosão crítica ao longo dos anos, ou seja, esses pontos vêm demonstrando erosão há muito tempo e, atualmente, a erosão não se encontra tão severa na maioria dos locais, porém em alguns locais do ponto P07 há erosão severa acontecendo atualmente, principalmente, quando se aproxima do P06. O P08 em específico, foi o ponto de maior perda significativa de sedimentos ao longo dos anos, mas não é um ponto que demonstra, atualmente, erosão severa e isso se dá, por não existir tantas construções e, sim, mais áreas de vegetação e maior zona de

espraiamento nessa região. Outro fato importante do P08 é que o mesmo fica situado na região do "pontal" da desembocadura da baía da Babitonga e, é fortemente influenciado pela enchente e vazão da baía. Por isso, essa grande diferença ao longo dos anos nos padrões erosivos que é natural do ambiente. Já o P09, demonstrou padrões de erosão severa na análise atual, contudo este ponto encontra-se estável ao longo dos anos e visualmente estável nos dias de hoje. O P09 representa uma praia diretamente relacionada a ação da Baía, possui hidrodinâmica muito tranquila, por isso, neste ponto, em exceção, mesmo que tenha apresentado erosão severa no Índice de Vulnerabilidade, foi entendido, através da análise DSAS, que ao longo dos anos a praia se encontra estável.

A erosão costeira é um problema cada vez mais presente em diversas partes do mundo, podendo ter consequências significativas para a infraestrutura e as comunidades, como observadas nos pontos P03, P06, P7 e P08, os quais em muitos locais em cada ponto encontra-se em estado avançado de erosão. Por outro lado, os pontos de estabilidade e acresção indicam áreas onde a costa pode estar em equilíbrio ou mesmo ganhando sedimentos, o que pode ser uma boa notícia para as comunidades locais, principalmente nos pontos P01, P02, P04, P05 e P09. Contudo, é importante lembrar que a costa é um sistema dinâmico e pode mudar rapidamente em resposta a eventos extremos, como tempestades e mudanças climáticas.

Segundo Castelle e Masselink (2022), as praias arenosas costumam manter seu equilíbrio e ser persistentes ao longo do tempo, permanecendo no mesmo local por longos períodos. Isso permite que, no curto a médio prazo (de dias a anos), essas praias sejam consideradas como sistemas que oscilam em torno de um estado de equilíbrio estático subjacente, permitindo uma melhor compreensão do ambiente em equilíbrio, como destacado por Hunt et al. (2023). A afirmação de que as praias arenosas costumam manter seu equilíbrio e ser persistentes ao longo do tempo não significa que todas as praias sejam imutáveis. Elas podem sofrer mudanças devido a vários fatores, como a ação do mar, ventos, correntes, tempestades, entre outros. Além disso, outros fatores humanos, como a urbanização e o turismo, podem contribuir para a alteração do ambiente costeiro. Portanto, é possível que os processos de erosão e acresção em Itapoá estejam relacionados a esses fatores, e não necessariamente a um desequilíbrio natural de longo prazo. Algumas referências que podem ser utilizadas para corroborar com a ideia de que a resposta do ambiente em Itapoá tem sido mais severa devido aos processos ocorrendo há muito tempo são os estudos de Ângulo et al. (2002), Ângulo, 2004, Ângulo e Souza 2004 e Silveira et al. (2019) que investigaram os eventos erosivos e a dinâmica da linha de costa na região de Itapoá, e concluíram que a intensificação dos processos erosivos é resultado de uma combinação de fatores naturais e antrópicos ao longo de décadas. Uma característica das propriedades dos processos morfodinâmicos diz respeito ao *feedback* cíclico (*looping*) (positivo – autorregulação, ou negativo – auto-organização) entre topografia e dinâmica dos fluídos que dirigem o transporte sedimentar, produzindo mudanças na morfologia (COWELL; THOM, 1994; HARDISTY, 1990; KOMAR, 1976). Nas últimas 32 décadas, tem havido intensa discussão acerca do conceito de auto-organização, que se refere ao desenvolvimento de feições morfológicas com determinada forma e espaçamento que possam ter surgido de mútuas interações entre forma e processo (COCO, 2003; MASSELINK; GEHRELS, 2014; WERNER; FINK, 1993).

Segundo Cowell e Thom (1994) a evolução das formas costeiras são inerentemente não linear e dependente do tempo como consequência dos efeitos combinados do *feedback* morfodinâmico e da introdução de incertezas ao sistema (comportamento Markoviano). Assim, os detalhes da evolução costeira são imprevisíveis, irrepetíveis e irreversíveis. Neste sentido, este complexo sistema geomorfológico tem o desenvolvimento de suas feições de relevo influenciadas tanto por forçantes naturais como antrópicas (VAN MAANEN *et al.*, 2016). Logo, o conhecimento dessas forçantes permitirá compreender melhor a variabilidade morfodinâmica presente nestes sistemas ao longo do tempo, desde a escala temporal de longo prazo, quanto de curto prazo, possibilitando a previsão de sua evolução futura. Isso se confirma de acordo com o resultado da análise DSAS, o qual entende-se que ao longo dos anos de 1985 a 2022 há perdas significativas de sedimento ao longo dos anos (maiores nos pontos de erosão severa) e que os sedimentos em Itapoá realmente estão se aprisionando para fora do sistema.

De acordo com Pethick (1984), alguns trabalhos clássicos, como os de Bascom, (1953) e Shepard e Inman (1950), demonstraram a relação entre tipos de ondas e gradiente do perfil praial, em que ondas menos energéticas, contribuem para construção da berma e progradação da face de praia em direção ao mar (perfil de tempo bom), encontrado no P01 e no P02. Durante condições de ondas de tempestade, ocorre a erosão da face da praia e o sedimento é transportado em direção ao mar, formando barras longitudinais e alargando o perfil praial (perfil de tempestade), encontrados na maioria dos pontos em estado de erosão ou erosão severa.

Os estudos realizados por Bittencourt *et al.* (1982), Dominguez *et al.* (1982) e Suguio *et al.* (1982) evidenciaram o impacto das oscilações do nível do mar durante o período Quaternário na formação dessas características geológicas. Além disso, foi observado que a redução de aproximadamente 5 metros desse nível nos últimos 5000 anos (MARTIN et al., 1980) expôs grandes quantidades de sedimentos na plataforma continental, sendo esse o principal fator responsável pelo avanço da linha costeira nessas áreas. Nesse contexto, as desembocaduras dos rios desempenham um papel secundário no fornecimento de sedimentos para a formação das planícies costeiras. A deriva litorânea tem uma função muito relevante na criação dessas planícies de areia (DOMINGUEZ et al., 1982). Por isso, vale lembrar que os sedimentos provindos da Baia da Babitonga, não são o principal suporte de areia das praias de Itapoá, e que a maioria da areia presente no ambiente já estava no mesmo ambiente após os processos eustáticos e isostáticos que ocorreram. Por essa razão, é importante destacar que a progradação costeira não ocorreu somente a partir dos sedimentos expostos durante a última regressão nas proximidades das planícies costeiras, mas também graças aos sistemas de correntes geradas pelas ondas que atuam na zona litorânea. Portanto, o principal motor que equilibra os sedimentos ao longo da praia são as correntes de deriva litorânea e em menor parte os sedimentos provindos do continente.

A partir da modelagem hidrodinâmica, foi possível observar que os pontos identificados como locais de erosão severa neste estudo (P06 e P07) sofrem influência direta da ação oceânica, o que já era esperado com base na caracterização in situ. Durante as diferentes estações do ano, a tendência hidrodinâmica na maré vazante segue o padrão normal da região da Baía, com a direção da água seguindo em direção norte, acompanhando a direção da deriva litorânea da região durante esse período. Ao analisar, a partir do ponto P06, pode ser entendido que na maré vazante, a hidrodinâmica fica mais forte em direção ao norte da costa, pois com o fluxo vazando da Baía da Babitonga em união com o fluxo da deriva litorânea tende com maior força para norte. Já na maré enchente para Baía da Babitonga, há uma influência de rotação hidrodinâmica próximo ao P06 para adentro da Baía no sentido sul, na força contrária, as correntes nesse ponto bifurcam para sul. Essa tendência nos padrões hidrodinâmicos, podem explicar o fato do P06 não conseguir manter a sedimentação. Entende-se que, há um fluxo rotacional ao longo das estações do ano próximo a região do P06 e P07, além de geograficamente esse ponto estar situado ao meio de um longo perfil de uma praial linear, o qual aos poucos ao longo dos anos pode apresentar a tendência de formação de arco praial (NASCIMENTO JR; ARAÚJO, 2016) e, isso pode ser uma das causas da intensa erosão que vem acontecendo nesse local. Embora a hidrodinâmica da região exerça sua influência nos

padrões de sedimentação e erosão, como em qualquer praia, o fato de que 2/3 das praias apresentaram sinais de erosão em algum ponto ao longo do percurso, incluindo o P02 e P05, indica uma falha no sistema sedimentar.

Os resultados da velocidade da vazão na desembocadura da Babitonga são importantes no equilíbrio dinâmico da região, pois a zona influencia diretamente nos padrões de circulação dos pontos P09, P08, P07, P06 e P05. Todavia, esse eixo ocasionado pelo fluxo de maré enchente e maré vazante ao longo dos meses é uma importante forçante na sedimentação da região. Em alguns pontos próximos e influenciados diretamente pela enchente da Baía da Babitonga o curso muda desde a região próxima ao ponto P05, o qual possui uma tendência de variação para sul, principalmente no mês de setembro. Os pontos P01, P02, P03 e P04 podem sofrer, indiretamente, a influência da desembocadura da baia da Babitonga.

De acordo com Gobbi (1997), as ondas na região do litoral norte de Santa Catarina atuam, principalmente, na direção ENE e SSE/SE e se observa que os ventos paralelos à costa são o principal agente motriz da maré meteorológica (MELO FILHO, 2017). Por isso, as trocas de sedimentos apresentam uma tendência de sul para norte, com alguns períodos de norte a sul, porém a predominância é para o norte (na maioria das estações do ano), como pode ser observado nos resultados da circulação hidrodinâmica, por isso, os perfis dos pontos P01, P02, P04 e P05, são mais estáveis, pois estão mais ao norte e em junção da geologia das praias possuem essa tendência deposicional maior que a erosão podendo suprir o balanço sedimentar entre os eventos sazonais. O ponto P05 encontra-se próximo ao ponto P04, local onde forma um "degrau" na linearidade da praia. Considerase que o P05 possui padrão de deposição estável pela sua localização geológica e disposição ao longo da praia. O P04, refere-se a duas praias em arco, formada por pontais rochosos. Praias em arco ou de enseada possuem uma tendência de deposicional diferente, devido a incidência das ondas não serem lineares e estarem relacionadas com o aspecto que pode ser de variados tipos, mas normalmente ocorre associada ao padrão de refração e difração que as ondas sofrem de acordo com a disposição dos promontórios rochosos (BULHÕES, 2011; BULHÕES E FERNANDEZ, 2011; BULHÕES et al., 2011). A partir do P03 pode-se entender um padrão de tendência natural do ambiente, pois a linha de costa possui um "degrau" em relação a direção da deriva continental. Isso ocorre, principalmente pela geologia local, o qual essa interferência ocasionada por dois pontais rochosos (nomeados de 1° e 2° pedra) ocasionam em padrão de depósito sedimentar a montante do fluxo (referente ao P05) e uma tendência de erosão a jusante do fluxo

(referente ao P03). Claramente, esse padrão poderia ser minimizado na presença de aporte sedimentar robusto. Por isso, quando o sistema não possui um aporte sedimentar razoável, ou por outros motivos, está perdendo sedimento, a geologia passa a ser a principal definição da sedimentação naquela região somadas à hidrodinâmica local (LEATHERMAN, 1988). Além disso, essas praias de Itapoá tendem a possuir zonas de espraiamento e pós-praia extensas e com suas origens associadas à presença de restingas, que são formas de proteção natural da praia. Caso essas praias não fossem habitadas e não houvesse construções próximas e, ainda mantivessem a proteção da restinga, a tendência seria que não ocorresse erosão no pontos mais afetados, pois os sedimentos tenderiam a se manter mais apriosionado na costa (ZASSO et al., 2013). Nota-se também, que pontos como P01, P02 e vários locais do P05 possuem vegetação pouco desenvolvida na costa, visto que esses pontos tambem possuem maior estabilidade no perfil. A depredação das restingas para construções ou fins turísticos, também pode contribuir para erosão costeira, porque as restingas são as principais formas de defesa natural do ambiente em relação a erosão e a inundações costeiras (FALKENBERG, 1999; ROSUMEK et al., 2007). Segundo o MapBiomas a geologia local, já é por si só uma forçante controladora da disposição e da formação das praias, inclusive é a geologia local que controla as formas de energia que as ondas exercem sobre a costa (GALLOP et al., 2020). Por essa razão, quando a costa é altamente controlada pela ação humana na construção de contenções/ casas etc., a erosão também é a resposta do ambiente em relação as forçantes físicas. Conforme estudo realizado por Porpilho (2012), as praias de Itapoá apresentam uma sedimentologia predominantemente composta por areia fina, tanto na região de pós-praia, face da praia e na praia média. O diâmetro médio dos grãos é de 0,18 mm no pós-praia e face da praia, e 0,16 mm na praia média. Ao longo da praia, observa-se uma granulometria de areia fina, variando de 0,125 mm a 0,25 mm, com um aumento do tamanho de grão de sul para norte e uma variação de moderadamente selecionado a bem selecionado. A deposição de sedimentos levemente maiores na região norte (P01 e P02) de Itapoá ocorre devido à capacidade de transporte ser mais direcionada para essa direção, o que resulta em um aumento gradual do tamanho dos grãos em direção ao norte da praia, outro aporte de sedimento importante do P01 são as desembocaduras dos rios Saí-Mirim e Saí-Guaçu. As praias de Itapoá, assim como descrito acima, possuem a granulometria média de 0,18 mm e, segundo a classificação de Hegge et al. (1996), as praias planas possuem as mais largas faces praiais, bem como as mais extensas e planas zonas de espraiamento e surfe, os sedimentos são mais finos a médios, menos permeáveis e bem selecionados. Logo, as praias de Itapoá, em geral deveriam seguir uma zona de espraiamento e pós praia com grandes extensões, no entanto isso não ocorre em todos os pontos, invés disso, alguns pontos ocorrem a erosão e erosão severa. No entanto, não é somente isso que define a disposição e a erosão, segundo King (1973) a energia das ondas é muito importante pela capacidade transporte na disposição geral dos grãos, geralmente praias com hidrodinâmica maior tende a possuir grãos maiores e praias menos intensas na hidrodinâmica tende a estar associado a sedimentos mais finos. Outros fatores, como o empolamento, a refração, a difração e a fricção influenciam diretamente na circulação e, consequentemente, no transporte sedimentar da zona costeira (BATISTA NETO, *et al.*, 2004).

Na desembocadura da Baía da Babitonga, há formação do delta de maré vazante, comumente encontrado no lobo frontal do delta, o que resulta em águas mais rasas e provocam arrebentação propiciando o transporte de sedimentos (ANGULO et al., 2002). Por isso, nas praias estuarinas, por mais que haja erosão e pouca largura no perfil praial no ponto P09 encontra-se mais estável na maioria do perfil praial e os P08 e P07, por mais perdas de areia que venha acontecendo, ainda possui um aporte sedimentar próximo ao perfil. Esse delta formado pela sedimentação, resulta em aporte sedimentar para o balanço desses pontos, ocorrendo maior equilíbrio sedimentar pela troca e refúgio de sedimentos. No entanto, devido a localização do canal dragado ser relativamente próxima, pode estar influenciando no refúgio dos sedimentos, mesmo quando há formação de delta de maré vazante muito próximo ou pela fraca hidrodinâmica não ser capaz de direcionar o sedimento para praia. Outra característica importante, refere-se a alguns locais no P09 próximo a plataforma de navios do Porto de Itapoá, que se notou sinais de acresção em locais próximos que funciona como uma forma de contenção do sedimento. É importante salientar que a hidrodinâmica avaliada nesta pesquisa apenas resultou no estado de circulação da hidrodinâmica local e não da ação das ondas. Inclusive, os modelos de ondas são essenciais para um estudo em escalas menores para entender a morfologia de praias.

Segundo Angulo e Souza (2003), quando tem a presença de um canal profundo, seja natural ou pela ação da dragagem, a tendência é que os sedimentos trazidos pela deriva continental se afugentam no canal ou sejam transportados para regiões mais longes da plataforma, ocasionando um déficit na região praial. O histórico de dragagem na região iniciou-se com o início da construção do Porto de São Francisco em meados de 1950 e até os dias de hoje o Canal da Baía da Babitonga possui dragagens constantes para manter a profundidade do canal, e isto ocorre justamente porque o sedimento tende a voltar para o canal. Com a intensa ação da dragagem que acontece na região o aporte sedimentar segundo estudos do Ângulo *et al.* (2002) e outros relatórios (MME, 2014; EIA-RIMAS de 2011, 2015 e 2020; EPAGRI, 2020; MMA, 2018) o looping da região encontra se negativo ao passar dos anos, pois o sedimento está tendendo a ficar aprisionado para fora da plataforma, desta forma o sedimento não consegue retornar para o sistema. Alguns pontos como, o P05 foi evidenciado a formação de pequenos e pouco desenvolvidos de sistemas dunares, o que demonstra que o que não fica preso para fora da plataforma, aprisiona-se no sistema dunar. Neste sentido, este complexo sistema geomorfológico tem o desenvolvimento de suas feições de relevo influenciadas tanto por forçantes naturais como antrópicas.

Neste estudo, das 133 decretações da região nordeste de Santa Catarina, 15 delas foram acionadas por Itapoá, os quais no ano de 2001, 2003, 2013, 2014 e 2018 são diretamente relacionadas a eventos de inundação e erosão ocasionados pela ação do mar. No entanto, segundo o trabalho de Leal *et al.* (2021), entre o período dos anos de 1998 e 2020 foram verificados 134 desastres no estado de Santa Catarina, o qual Itapoá encontrase em 2º lugar com 11 desastres no total para este período e o litoral norte e central são os mais afetados pelos desastres em relação a todo Estado. Na pesquisa de Leal *et al.* (2021) foi concluído que estes desastres em sua maioria ocorreram em períodos que somavam eventos meteorológicos como ciclones e a eventos astronômicos como a marés de Sizígia e foi verificado que a partir de 2016 ocorre uma tendência de aumento na recorrência dos eventos e que as estações de outono, inverno e primavera interferem mais nesses eventos. No entanto, foram identificados que para Itapoá há uma diversidade na origem dos eventos, os quais resultaram nos decretos.

A análise realizada nesta pesquisa apontou que os ventos apresentam maior tendência na direção do vento para OSO-ENE (quadrantes Leste-Oeste) no período de 2007 a 2022, isso significa que a maior parte do tempo os ventos sopram do quadrante oeste para o quadrante leste. De acordo com Bigarella *et al.* (1978), a dinâmica dos ventos sobre a região de Itapoá é majoritariamente influenciada pelo Anticiclone do Atlântico Sul e pelo Anticiclone Migratório Polar. Ângulo (1992) realizou medições em Paranaguá, cidade vizinha a Itapoá, entre 1966 e 1983, indicando que os ventos predominantes eram de sul (22,8%) nos setores leste e sudeste (20,3%), enquanto os ventos continentais do sudoeste, oeste e noroeste ocorriam com frequência de 33,2%. Dados emitidos pela estação meteorológica da Escola Técnica Tupy para o período de 1995 a 1999 na região

de Itapoá revelam que os ventos de leste (26,5%) e nordeste (16,4%), este último com maior presença no verão, são predominantes. Durante o inverno, os ventos do quadrante sul (13,4%), sudeste (14,7%) e sudoeste (16,4%) são mais frequentes. Os demais ventos ocorrem em menor frequência: norte (5,4%), oeste (4,4%) e noroeste (2,3%). Dessa forma, durante o verão, a direção predominante dos ventos é do quadrante Norte/Nordeste, enquanto durante o inverno, os ventos sopram do quadrante Sul/Sudeste (NOBRE et al., 1986). De acordo com Melo Filho (2017), ventos do quadrante Sul tendem a elevar o nível do mar na costa, enquanto ventos do quadrante Norte tendem a rebaixá-lo. A associação entre a variação do nível do mar e as forças atmosféricas locais, incluindo intensidade e direção do vento e pressão na costa S/SE brasileira, é confirmada estatisticamente em eventos de "baixa frequência" (periodicidade superior a 55 horas). Com base na compreensão que os padrões de ventos variam conforme o ano e ao longo dos anos em Itapoá, ao analisar o padrão de ventos específico de cada período do decreto a partir de 2007, pode ser entendido uma variação no padrão de ventos conforme os decretos, em 2008 e 2020 nos períodos de decretos foram observados ventos de ENE para OSO, o qual o vento sopram de leste para oeste, ocasionando um empolamento da água e com isso as ondas chegam com maior intensidade na costa e, por isso, possui maior capacidade de erodir a costa. Todavia, os ventos quando forçados a essa intensidade possuem maior capacidade de erosão. Em 2010, ação de marés de sizígia não ocorriam no mesmo período, mas em 2020 a maré estava possivelmente em sizígia (estava mudando de quadratura para sizígia), fator que influencia diretamente no avanço da linha d'água sobre a linha de costa e está muito relacionada a eventos erosivos. Já em 2009, o processo do vento estava inverso, sendo pouco provável que o vento possua alguma ligação com possíveis eventos de erosão costeira. Neste ano, o decreto era para enxurradas e alagamentos, no entanto, o excesso de chuvas também pode ser uma força motriz de processos erosivos, principalmente na região de estudo o qual possui diversos canais de desague diretamente nos perfis praiais. Neste ano, nos dois decretos apenas um deles havia ação da maré sizígia, o que pode ter contribuído no período para a evolução da erosão. O excesso de chuvas também ocasiona maior vazão na baía da Babitonga. Em 2010, o vento oscilou para diversas direções nesse período do decreto, isso mostra uma certa instabilidade e momentos de tempestade na região, inclusive as rajadas de vento variaram até 14,9 m/s. Em 2011, os ventos ficaram oscilando no quadrante leste-oeste nos dois sentidos, também demonstrando instabilidade no padrão de ventos e somados a maré de sizígia no momento e rajadas de vento até 16,2 m/s, podem ter contribuído com intensa

ação da erosão sobre a costa e nos principais pontos de vulnerabilidade. Em 2008, 2009, 2010, 2013 e 2018 no momento dos decretos eram luas de quadratura, o qual resultam na ação da água em maior distância da linha de costa. Isto demonstra que outros fatores, como tempestades (mesmo com ventos relativamente menores do que esperados em tempestades), seja mesmo isolados de maré astronômica são capazes de erodir a costa de Itapoá. Como por exemplo, em 2018, a direção era OSO-ENE e bem fraco, o que é representado no estudo de Silveira et al. (2019), em 18 e 22 de setembro de 2018, o qual representou eventos de intensa erosão e avanço na linha de costa em Itapoá, o autor com base nas informações apresentadas pela NOAA, determinou que a causa da erosão não foi uma maré de tempestade (storm tide), mas sim um aumento repentino do nível do mar provocado por uma storm surge. Essa conclusão se baseia no fato de que, durante o evento, a maré apresentava uma condição de quadratura e não de sizígia, o que contradiz o conceito de maré de tempestade. Em 2018, ocorreram as decretações provindas da erosão costeira e, ficou evidenciado que uma tempestade isoladamente de outros fatores, como a maré meteorológica, já foi suficiente para alterar o perfil praial e ocasionar grande deterioração na linha de costa nos P03, P06 e P07. A presença de eventos isolados na região, também pode ser entendido pela não relação entre a maré meteorológica e as componentes $u \in v$ dos ventos e nem com as demais componentes testadas o qual resultaram como inconclusivas. No entanto, pela relação maré astronômica com velocidade dos ventos pode ser entendida que não há uma relação positiva entre o fator motriz maré com a velocidade ou com a direção dos ventos. Lembrando que a correlação de postos de Spearman é particularmente útil quando as variáveis não possuem uma distribuição normal ou quando há presença de outliers. Além disso, ela é adequada para lidar com dados que não possuem uma relação linear, pois representa uma medida de correlação não-paramétrica. Ao contrário do coeficiente de correlação de Pearson não requer a suposição que a relação entre as variáveis e, por isso, é linear. Assim como, as variáveis podem ou não serem quantitativas e pode ser usado para as variáveis medidas no nível ordinal (PIRES et al., 2018). No entanto, em diversos estudos, como Li, et al. (2019), Vitorino et al. (2004) e Yin et al. (2018) relatam que as marés em geral, são influenciadas pela ação e intensidade dos ventos, mas como existem outros fatores diretamente relacionados com ação da maré na costa, como a gravidade, as fases da Lua, a topografia, as correntes oceânicas, assim como os ventos locais afetam a distribuição da água (NOAA, 2021; FENTRESS, 2017). Por isso, os testes realizados podem ter sido negativos em virtude de outros fatores para a série analisada. Todavia, a maré meteorológica é influenciada tanto pela componente de direção leste-oeste, quanto pela componente de direção norte-sul do vento (GOBBI, 1997; MELO FILHO, 2017). Portanto, pode ser entendido que a componente da maré meteorológica também é um agente motriz capaz de modificar o ambiente praial, como visto para os padrões de erosão ou acresção evidenciados através das técnicas de IVC, Perfis e DSAS. No estudo de Vedana *et al.* (2021) que correlacionou a maré meteorológica e vento para os anos de 2014 a 2019, verificou que entre a maré meteorológica e a componente meridional do vento (v) com rho= 0.2488515 e com a componente zonal do vento (u) com rho= 0.114626 demonstrou também baixa correlação positiva entres os fatores. Mesmo com a fraca correlação, pode ser entendido que nesta análise ocorreu correlação entre a maré meteorológica e o vento, e fica evidenciado que mas que outros fatores também influenciam a ação da maré meteorológica e não somente o vento.

Segundo a NOAA, NASA e IPCC, o El Niño é um fenômeno climático que ocorre periodicamente no Oceano Pacífico tropical e pode durar vários meses. Não há um conjunto específico de anos em que o El Niño ocorre, pois sua ocorrência é variável. No entanto, alguns dos anos em que houve eventos El Niño significativos incluem: 2015-2016; 2009-2010; 2002-2003; 1997-1998. Conforme as decretações de desastres, foram caracterizadas principalmente em anos de El Niño, como em 2001, entre os anos de 2008 e 2011, registrados alto índices de desastres pela região nordeste de Santa Catarina e podem estar relacionado diretamente com a predominância do El Niño. Vale lembrar que o El Niño não é um evento isolado, mas sim um fenômeno que faz parte de um ciclo maior de variação climática conhecido como Oscilação Sul El Niño (ENSO, na sigla em inglês). Em relação ao clima, 2013 e 2014 foram anos com condições meteorológicas distintas em Itapoá e Santa Catarina. Em 2013, o estado de Santa Catarina teve um verão com chuvas acima da média, o que causou enchentes e deslizamentos em diversas regiões, incluindo Itapoá. Em janeiro daquele ano, por exemplo, houve uma grande enchente na cidade que deixou diversas ruas alagadas e causou muitos dados gerais (EPAGRI/ CIRAM, 2014; DEFESA CIVIL, 2013). Já em 2014, o verão foi marcado por uma forte estiagem em Santa Catarina, com chuvas abaixo da média e temperaturas elevadas. É importante destacar que o clima é um fenômeno complexo e que pode variar bastante de ano para ano, inclusive dentro de uma mesma região.

A erosão costeira em Itapoá está marcada por diversos momentos de progressão, devido a vulnerabilidade, principalmente nos pontos P03, P06, P07 e P08. A cada evento de tempestade, com o passar dos anos, a erosão costeira avançou de forma significativa em Itapoá, resultando em perda de solo e impactos negativos para a infraestrutura e comunidades locais. Embora o processo de erosão possa progredir de maneira mais lenta e mais rápida em diferentes anos, a degradação continua e pode ser agravada por fatores de dimensões maiores, como a elevação do nível do mar e mudanças climáticas globais.

A costa de Itapoá evidenciou que se encontra totalmente desprotegida a eventos de intensidade (moderados a mais intensos) nos pontos que já estão em estado de erosão severa, o qual é muito preocupante, pois com o aumento do nível do mar em virtude das mudanças climáticas, deixará a costa ainda mais vulnerável. Todavia, em junção da densidade demográfica na costa ser muito alta e muito próxima do perfil, a falta de sedimentos desencadeada por anos de atividade de dragagem na região e pelo avanço do nível do mar e aumento na recorrência de eventos climáticos, acontece a erosão em 6 praias (6 pontos), do qual 3 praias (3 pontos) encontram-se em estado de erosão severa e necessitam de algum modelo de contenção ou realocação das construções/casas. Assim, é preciso realizar uma avaliação mais criteriosa da engorda de praia, especialmente nos pontos P03, P06 e P07, que apresentam um alto nível de avanço, antes de considerar qualquer modelo de suprimento de sedimento para a região. Como por exemplo, o estudo da modelagem das ondas/ hidrodinâmica seria uma estratégia valiosa para determinação da suplementação sedimentar e da construção de barreiras físicas. Portanto, para garantir a segurança das comunidades locais e preservar o meio ambiente costeiro é necessário a monitoramento constante da costa para gerar dados mais confiáveis e poder desenvolver modelos numéricos de mais precisão ao ambiente, incluindo modelação de Runup, para poder compreender melhor os fluxos das praias (VAN MAANEN et al., 2016).

Na praia de Itapoá, desde 1996 (ou até anos antes), é constatado a presença de contenções provindas de diversos materiais para o bloqueio do avanço da erosão. No entanto, segundo Angulo & Souza (2003) essas contenções são muito prejudiciais ao ambiente e para os próprios processos de erosão, que ao ser colocado sedimentos de dureza ou maiores granulometrias a tendência é aumentar o déficit sedimentar da região e provocar intensas erosões em áreas adjacentes. A engorda do perfil praial em Itapoá está em processos licitatórios conforme informações da Prefeitura do município, no entanto esta medida tem caráter provisório levando em consideração os panoramas globais. Segundo Schmidt *et al.* (2012) a região do litoral norte de Santa Catarina é responsável por 11,4% do total de obras costeiras de barragem no Brasil para conter a erosão costeira, assim como potencializou a influência de desembocadura (dragagem dos

portos de São Francisco do Sul e Itapoá) e a ocupação antrópica da linha de costa como as principais causas do avanço da erosão na região de Itapoá.

A falta de sedimento na região e as forçantes meteorológicas removem do sistema de feedback cíclico da região, ocasionando a erosão evidenciado a cada ano a evolução da erosão costeira na região. Não somente a dragagem na região, mas a larga ocupação urbana muito próximo ou dentro do perfil praial, tem sido o principal problema enfrentado pela cidade de Itapoá. Considerando os novos dados climáticos e de avanço do nível do mar, em específico a cidade de Itapoá/ SC deve tomar medidas de contenção e/ou de realocação de residências de imediato nos pontos P03, P06 e P07 entre os próximos 30 anos. Como no relatório do IPCC (2021) e OMM (2022) a projeção do aumento no nível relativo do mar para 0,13 a 0,50 cm/ano até 2100, ou seja, em 30 anos essas medidas podem chegar até 30 cm. Dessa forma, é importante acompanhar as informações meteorológicas atualizadas e estar preparado para enfrentar eventuais situações de risco decorrentes de condições climáticas adversas.

O quadro 5 mostra o resumo das técnicas e métodos utilizados e seus respectivos resultados par cada ponto da área de estudo. No caso do Ponto 01, foi observado que os resultados obtidos através de diversas técnicas foram similares, indicando que a praia apresenta um padrão de estabilidade/acresção consistente, e que sua configuração natural não sofre influência direta da Baía da Babitonga. Além disso, em dias de tempestade, a costa parece ser menos impactada. Vale ressaltar que as construções na região estão localizadas a certa distância do perfil da praia.

PONTOS	IVC 2021-2022	DSAS HISTÓRICA 1985-2022	DERIVA LITORÂNEA/ HIDRODINÂMICA - 2021	MARÉ/VENTO = AGITAÇÃO 2014-2022	VAZANTE DA BABITONGA	PROXIMIDADE DE CONSTRUÇÕES	CONCLUSÃO EM DIAS NORMAIS	CONCLUSÃO EM DIAS DE TEMPESTADE
P01	ESTABILIDADE	ESTÁVEL E ACRESÇÃO	DEPOSITA SEDIMENTO	BALANÇO NATURAL	NÃO INFLUENCIA	MÉDIA	ESTÁVEL E EM ACRESÇÃO	BAIXO IMPACTO
<i>P02</i>	EROSÃO	ESTÁVEL	DEPOSITA SEDIMENTO	BALANÇO NATURAL	NÃO INFLUENCIA	MUITO PRÓXIMA	ESTÁVEL	MÉDIO IMPACTO
<i>P03</i>	EROSÃO SEVERA	EROSÃO CRÍTICA	ERODE A JUZANTE DO P04	AJUDA A ERODIR	NÃO INFLUENCIA	DENTRO DO PERFIL	EROSÃO SEVERA	ALTO IMPACTO
<i>P04</i>	ESTABILIDADE	ESTÁVEL	MANTÉM O SEDIMENTO	AJUDA A ERODIR	NÃO INFLUENCIA	MUITO PRÓXIMA	ESTÁVEL	ALTO IMPACTO
P05	EROSÃO	ESTÁVEL	DEPOSITA E RETIRA SEDIMENTO	AJUDA A ERODIR	INFLUENCIA POUCO	MUITO PRÓXIMA	ESTÁVEL	MÉDIO IMPACTO
<i>P06</i>	EROSÃO SEVERA	EROSÃO CRÍTICA	AJUDA A ERODIR	AJUDA A ERODIR	INFLUENCIA POUCO	DENTRO DO PERFIL	EROSÃO SEVERA	ALTO IMPACTO
<i>P07</i>	EROSÃO	EROSÃO CRÍTICA	AJUDA A ERODIR	AJUDA A ERODIR	INFLUENCIA DIRETO NA EROSÃO	DENTRO DO PERFIL	EROSÃO SEVERA	ALTO IMPACTO
P08	EROSÃO	EROSÃO CRÍTICA	AJUDA A ERODIR	AJUDA A ERODIR	INFLUENCIA DIRETO NA EROSÃO	MUITO PRÓXIMA	EROSÃO	MÉDIO IMPACTO

Quadro 5 - Resumo dos resultados e influência dos fatores externos.

Sugestões de Ações e Trabalhos Futuros

Com base nas informações apresentadas, podem ser sugeridos alguns produtos de gestão que podem auxiliar no avanço da erosão costeira na região de Itapoá:

- Sistema de monitoramento de dragagem: é essencial implementar um sistema de monitoramento adequado da dragagem, com o objetivo de controlar a qualidade do sedimento retirado e verificar se as áreas de deposição estão sendo respeitadas. Esse sistema pode incluir a utilização de câmeras e sensores de qualidade da água para garantir que o sedimento está sendo depositado de forma adequada.
- Monitoramento do ambiente através de vídeo-monitoramento com a finalidade de entender a morfodinâmica praial e escolher melhores formas de contenção respeitando os limites do ambiente.
- 3. Unificação de dados: é importante realizar um esforço conjunto para unificar os dados existentes e coletar novos dados relacionados à erosão costeira na região. Esses dados podem ser utilizados para alimentar modelos de previsão e planejamento, permitindo que sejam tomadas medidas preventivas e corretivas de forma mais eficiente. Assim como, obter dados para esta pesquisa foi extremamente desafiador, já que as informações são fornecidas pelos órgãos de forma demorada ou, em alguns casos, simplesmente não são disponibilizadas.
- 4. Sistema de realocação de sedimento: é necessário implementar um sistema de realocação de sedimento que leve em consideração o ponto hidrodinâmico de sedimentação para que o sedimento seja depositado de forma natural, sem afetar o desenvolvimento da praia. Esse sistema pode incluir o uso de técnicas de testes de coloração para identificar o ponto ideal de assentamento do grão, para assim realizar o remanejo adequado.
- 5. Medidas compensatórias: é importante que as autoridades responsáveis pela licença da dragagem incluam medidas compensatórias para a erosão costeira, garantindo que os impactos negativos sejam minimizados. Essas medidas podem incluir ações de restauração da costa, como a construção de barreiras de areia ou

a realocação de sedimento em áreas vulneráveis e replantio nas áreas de restingas, bem como, garantir que os recursos utilizados sejam provindos de empresas privadas e não públicas.

 Aplicação, Integralização e Otimização do Projeto PROCOSTA (PROCOSTA, 2018) em definição ao Projeto GLOSS-Brasil, que possa ser eficiente a cidades adjacentes a grandes empreendimentos costeiros, como é o caso de Itapoá.

Esses produtos de gestão podem ser implementados de forma integrada para garantir a solução do problema de erosão costeira na região. É importante lembrar que essas soluções devem ser adaptadas às particularidades locais e que devem ser baseadas em informações científicas atualizadas para garantir sua efetividade.

6. CONSIDERAÇÕES FINAIS

A erosão costeira nas praias de Itapoá-SC é influenciada por uma série de fatores. Os processos naturais existentes na região têm um papel importante nesse processo, assim como as tempestades frequentes que afetam praticamente todo o estado do Paraná e Santa Catarina. Além disso, a dragagem da região pode afugentar sedimentos para fora da plataforma continental, contribuindo para o déficit sedimentar na costa e contribuir para a erosão.

No entanto, o fato de que os resultados obtidos evidenciaram o avanço da erosão ao longo dos anos e que a as análises foram contundentes, indicam que as metodologias utilizadas foram capazes de fornecer informações precisas e confiáveis sobre a vulnerabilidade costeira da área, o que é muito importante para o planejamento e gestão costeira. Além disso, a união da utilização de metodologias como o Índice de Vulnerabilidade Costeira, os Perfis Topográficos a análise DSAS podem fornecer informações sobre a vulnerabilidade costeira em uma escala mais ampla, permitindo a comparação de áreas costeiras e auxiliando na tomada de decisões em relação à gestão costeira em nível regional de maneira rápida e com baixo custo. De fato, ter identificado 3 pontos de erosão severa (P03, P06, P07) e outros 3 pontos (P02, P05 e P08) com sinais de erosão é preocupante e deve ser considerado nas políticas de gerenciamento costeiro da região, pois apenas 2 pontos de praias (P01 e P09), encontram-se com perfis aceitáveis do ponto de vista do gerenciamento costeiro.

Em resumo, o ponto P01 possui o padrão de acresção, devido possui vegetação

nativa, as construções estão mais longe do perfil e há zona de duas descargas fluviais que dão aporte sedimentar a região, somados a sua posição mais ao norte, que são os pontos onde a deriva continental tende a levar mais o sedimento. A diferença entre o ponto P01 e ponto P02, são as construções próximas ao perfil e ausência de resinga em várias áreas, por isso, apesar da região ter resultado em padrão estável, há sinais de erosão. Já o ponto 03 é resultado de severa erosão por estar situado a jusante do fluxo da deriva continental, onde o sedimento tende a aprisionar nos pontos P05 e P04. O ponto P04, são praias de em arco e possuem estabilidade no perfil, por se tratar de uma praia geologicamente muito controlada, tende a se manter em equilíbrio ao longo dos anos. O ponto P05, demonstrouse com padrão estável ao longo dos anos e muito parecido ao ponto P02, possui sinais de erosão e pouca vegetação nativa, por ser o último ponto antes do "degrau", tende a manter o padrão de sedimentação equilibrado. Já no ponto P06 e P07, são praias lineares, com construções muito próximas e muitas já dentro do perfil de impacto, em muitas áreas não há mais presença de areia seca e ao longo dos anos, as forças hidrodinâmicas tendem a formar um leve arco, principalmente na localização do P06. Nos pontos P07 e P08, evidenciou-se um padrão erosivo avançado ao longo dos anos, no entanto em muitos locais nessa região há extensas faixas de areia, isso dá-se pela hidrodinâmica nessa região ser menos agressiva. Assim, como a zona do pontal no ponto P08, está localizado na desembocadura da Babitonga e, é diretamente influenciado pela movimentação hidrodinâmica da área. O ponto P09, zona tranquila, por se tratar de praia estuarina e por mais que não haja faixa extensa de praia a zona encontra-se estável e com pontos de acresção, principalmente, na zona paralela ao trapiche do Porto de Itapoá.

A hidrodinâmica do ambiente costeiro de Itapoá é influenciada pelo padrão de ventos através das correntes de deriva litorânea e da Baia da Babitonga, sendo que as praias mais abrigadas são menos afetadas pela ação do mar e as mais expostas sofrem influência direta. Apesar da erosão ser um processo natural em praias, aquelas que estão diretamente expostas às forças oceânicas são mais suscetíveis a esse fenômeno. Entretanto, na região, a ocupação desordenada da costa é um dos principais fatores que contribuem para agravar a erosão costeira. Isso ocorre porque a retirada de formas naturais de proteção, como a restinga, pode deixar a costa desprotegida e mais vulnerável aos efeitos das tempestades e outras forças meteorológicas que intensificam a força das ondas. É importante destacar que a erosão costeira só se torna um problema quando a ocupação da costa é feita de forma desordenada e sem planejamento adequado. Quando o ambiente possui proteções naturais, como a restinga, e é permitido seguir seu desenho

praial em diferentes formas, conforme sua sazonalidade, a erosão é apenas um dos processos naturais que moldam o ambiente. Assim como o excesso de enrocamentos rochosos, além de modificar o perfil praial podem intensificar a erosão ao longo dos anos. Todavia, com as mudanças climáticas globais em curso, esses processos tendem a ser acelerados e intensificados, o que pode agravar ainda mais os problemas já existentes na região. Portanto, é importante que haja um planejamento adequado da ocupação da costa, a fim de minimizar os efeitos da erosão costeira e preservar os ecossistemas naturais da região, principalmente, nos pontos P03, P06 e P07 a costa encontra-se completamente exposta às tempestades, por isso, ao longo dos anos conforme as mudanças nos perfis há uma tendência a voltar ao seu estado de equilíbrio, no entanto, a colocação de contenções inapropriadas somadas ao déficit sedimentar, muitas vezes, impedem do perfil retornar ao seu estado de equilíbrio acarretando a longo prazo em cada vez mais padrões erosivos, por isso, a tendência é que a cada tempestade a erosão avançará um pouco mais, principalmente, nos pontos em que já sofrem com estados avançados de erosão.

Diante desses problemas é preciso que haja uma gestão integrada e sustentável da zona costeira, que leve em consideração a complexidade dos processos hidrodinâmicos e sedimentológicos da região.

7. PRODUTOS DESENVOLVIDOS

Produto 1. Aplicativo Apk desenvolvido para Android. Disponível em: https://www.androidauthority.com/how-to-install-apks-31494/

O aplicativo foi desenvolvido com o objetivo de proporcionar o acesso dos resultados encontrados no presente estudo à população em geral.

O usuário necessita apenas estar em um espaço aberto a fim de que o aplicativo possa detectar linhas ou planos a fim de gerar as imagens dos resultados por meio de realidade aumentada (Figura 1).

Este aplicativo representa uma ferramenta para disseminação do estudo científico e do conhecimento tanto para o público em geral quanto para a comunidade local.

FIGURA 1 – RESULTADO DA REALIDADE AUMENTADA NO APP APK.

Produto 2. Mapa de risco de erosão costeira

Por meio dos resultados do estudo foi possível gerar um Mapa de risco de erosão costeira (Figura 2), onde pode-se observar os pontos em vermelho com erosão ou erosão severa e os pontos em verde com estabilidade.

FIGURA 2 – MAPA DE RISCO DA ÁREA DE ITAPOÁ

Produto 3. Relatório técnico simplificado

O presente relatório técnico apresenta um resumo do estudo realizado na dissertação de mestrado da aluna Ariana Pereira Barboza da Silva, desenvolvido pelo Programa de Mestrado em Clima e Ambiente do Instituto Federal de Santa Catarina.

O relatório teve como área de estudo as praias de Itapoá (figura 4) onde, a partir da união de técnicas de análise de vulnerabilidade costeira de baixo custo, foi constatado que o uso combinado da análise dos perfis topográficos, caracterização e Índice de Vulnerabilidade Costeira (IVC), juntamente com a análise DSAS (figura 5) possibilitou gerar resultados com boa confiabilidade, com identificação e classificação do estado erosional de cada ponto de praia, assim como uma classificação da vulnerabilidade costeira das praias.

Nas figuras 5 e 6 é possível visualizar os resultados das técnicas separadamente, apresentando a caracterização do estado atual de erosão e sua evolução ao longo dos anos. Com base nesses resultados, o mapa de risco da figura 7 destaca as áreas de risco em vermelho, que correspondem aos pontos P03, P06, P07 e P08. Portanto, pode-se concluir que essa metodologia permite uma análise precisa da vulnerabilidade costeira de forma acessível e eficiente.

FIGURA 3 – METODOLOGIA PARA ANÁLISE DE VULNERABILIDA COSTEIRA

VULNERABILIDADE

COSTEIRA

Fonte: Prefeitura, 2022.

Fonte: Prefeitura, 2022.
FIGURA 5 – JUNÇÃO DE TÉCNICAS E RESULTADOS

VULNERABILIDADE COSTEIRA

VULNERABILIDADE COSTEIRA

Produto 4 – Artigo

Análise espaço-temporal da evolução da vulnerabilidade costeira em Itapoá – Santa Catarina: Uma Perspectiva Hidrogeomorfológica e Climática. Revista Estrabão (DOI: 10.53455/re.v2i.51).

Produto 5 – Artigo

Perspectiva Nacional Sobre la Gestión de la Erosión Costera en Función de los Cambios Climaticos Globales – Revista Costas (**em andamento – fase de submissão**).

Produto 6 – Artigo

Análise espaço-temporal da evolução da vulnerabilidade costeira em Itapoá – Santa Catarina: Uma Perspectiva Hidrogeomorfológica e Climática - Revista Ocean & Coastal Management (**em andamento – fase de submissão**).

Produto 7 – Resumo expandido

Análise Histórica da Evolução Linha de Costa de Itapoá-SC (IX ESBmet – Encontro Sul Brasileiro de Meteorologia)

Produto 8 – Resumo expandido

Perspectiva Nacional de Gerenciamento Costeiro sobre a Erosão Costeira em função das Mudanças Climáticas Globais. (Congremet – Congresso Argentino de Meteorologia)

Produto 9 – Resumo expandido

Silva, A., & Suski, C. (2021). Análise espaço-temporal da evolução da vulnerabilidade costeira em Itapoá - Santa Catarina: Uma Perspectiva Hidrogeomorfológica e Climática. Estrabão, 2, 230–233. https://doi.org/10.53455/re.v2i.51

Produto 10 – Resumo expandido

Análise espaço-temporal da evolução da vulnerabilidade costeira em Itapoá – Santa Catarina: Uma Perspectiva Hidrogeomorfológica e Climática – Jornada em Clima e Ambiente IFSC (2022).

REFERÊNCIAS

ALBINO, J.; GIRARDI, G.; NASCIMENTO, A.K.; SANTOS, F. Atlas de erosão e progradação costeira do litoral do Espírito Santo. **Technical Report.** Atlas de Erosão e Progradação do litoral do Brasil, 2004.

ALEXANDRAKIS, G.; MANASAKIS, C.; KAMPANIS, N. A. Valuating the effects of beach erosion to tourism revenue. A management perspective. **Ocean & Coastal Management**, v. 111, p. 1–11, 2015.

ALMEIDA, E.S.B.; LIMA, S.F.; TOLDO Jr., E.E. Estimativa da capacidade de transporte de sedimentos a partir de dados de ondas para a costa do Rio Grande do Sul. **Technical Report.** Atlas de Erosão e Progradação do litoral do Brasil, 2004.

ANDRADE, T. S.; SOUSA, P.H.G.O.; SIEGLE, E. Vulnerability to beach erosion based on a coastal processes approach, **Applied Geography**, São Paulo, v. 102, p. 12-19, 2019. Disponível em: https://doi.org/10.1016/j.apgeog.2018.11.003.

ÂNGULO, R. J. Geologia da planície costeira do estado do Paraná. Tese de doutorado. Universidade de São Paulo. Instituto de Geociências. São Paulo. 1992.

ÂNGULO, R. J. Aspectos físicos das dinâmicas de ambientes costeiros, seus usos e conflitos. **Desenvolvimento e Meio Ambiente**, Editora UFPR, n. 10, p. 175-185, jul./dez. 2004

ÂNGULO, R.J.; SOARES, C.R.; MARONE, E.; SOUZA, M.C.; ODRESKI, L.L.R. e NOERNBERG, M.A. Atlas de erosão costeira do estado do Paraná. **Técnica Report**. Atlas de Erosão e Progradação do litoral do Brasil, 2004.

ÂNGULO, R. J.; SOUZA, M. C. Laudo Técnico: Diagnóstico sobre os Problemas de Erosão Costeira no Município de Itapoá, Litoral Norte do Estado de Santa Catarina. Prefeitura Municipal de Itapoá, Curitiba, 2002.

ÂNGULO R. J.; SOUZA M. C. Coastal erosion problems induced by dredging in the channel acces of Paranaguá and São Francisco harbor, southern Brazil. In. 5th International Symposium on Coastal Engineering and Science Coastal Sediments Processes, St. Petersburg, Flórida, USA, 2003.

ÂNGULO, R. J.; SOUZA, M.C. Mapa Geológico da Planície Costeira Entre o Rio Saí-Guaçu e a Baía de São Francisco, Litoral Norte do Estado de Santa Catarina. **Boletim Paranaense de Geociências**, Editora UFPR, n. 55, p. 09-23, 2004.

ARAÚJO, T.C.M.; SANTOS, R.C.A.L; SEOANE; J.C.S.; MANSO, V.A.V. Atlas de erosão e progradação costeira do litoral do estado de Alagoas. **Technical Report**. Atlas de Erosão e Progradação do litoral do Brasil, 2004.

AUGUSTINUS, P.G.E.F. Coastal systems. In: Sala, M. Geography Oxford. Reino Unido, p. 305-318, 2009.

BAPTISTA NETO, J. A.; PONZI, A.; SICHEL, V. R.A. Métodos Diretos e Indiretos

de Investigação do Fundo Oceânico. Introdução a Geologia Marinha. Ed. Interciência, Rio de Janeiro, 279p., 2004).

BASCOM, W. H. Characteristics of natural beaches. In: Conference on Coastal Engineering, 4., 1953, Chicago. Anais... Chicago: **Council on Wave Research**, 1953. p. 163-180.

BIGARELLA, J. J.; BECKER, R. D.; MATOS, D. J.; WERNER, A. A Serra do Mar e a Porção Oriental do Estado do Paraná - Um problema de segurança ambiental e nacional. Secretaria de Estado do Planejamento e Associação de Defesa e Educação Ambiental, Curitiba, 1978.

BIRD, E.C.F. Recent changes on the world's Sandy shorelines. Coastal dynamics and scientific sites. In: BIRD, E. C. F. & KOIKE, K. **Departamento of Geography**, Kowazawa University. Japão. p.5-30, 1981.

BIRD, E.C.F. Coastline changes: a global review. John Wiley-Interscience, Chichester. Nova Iorque, p.219, 1985.

BIRD, E. Coastal geomorphology: an introduction. Chichester: John Wiley and Sons, 2008.

BITTENCOURT. A.C.S.P.; DOMINGUEZ, J.M.L.; MARTÍN. L.; FERREIRA, I.A. -Dados preliminares sobre a evolução do delta do rio São Francisco (SE; AL) durante o Quaternário: influência das variações do nível do mar. In: K. Suguio et al. (eds.), **Atas do IV Simpósio do Quaternário no Brasil**, Rio de Janeiro: p. 49-68, 1982.

BRUUN, P. M. Sea level rise as a cause of shore erosion. Am. Soc. Civil Engineers Proc., Jour. Waterways and Harbors Div. 88, 117-130, 1962.

BSO (Brazilian Sea Observatory). **Observatório Marinho Brasileiro**. Disponível em: http://brazilianseaobservatory.org/pt/. Acesso em: 14 set. 2021.

BULHÕES, E. Exposição de Praias, Clima de Ondas e Processos Físicos em Praias de Enseada: Exemplos e Aplicações em Armação dos Búzios, Rio de Janeiro, Brasil. (Tese de Doutorado). Instituto de Geociências. Universidade Federal Fluminense. Niterói, 230p. 2011.

BULHÕES, E; ESTRADA, A.F.D. Distribuição e Transporte de Sedimentos Costeiros em Ambiente de Baixa Energia. Enseada da Ferradura, Armação dos Búzios, Rio de Janeiro, Brasil. **Revista Gravel**, Vol. 9 (1), p. 41-56, 2011.

BULHÕES, E.; FERNANDEZ, G.B. Analysis of Shallow Water Wave Propagation and Coastal Response in Embayed Beaches. Case Study in Cape Buzios, Rio de Janeiro, Brazil. **Journal of Coastal Research**, SI 64, p. 2022-2026, 2011.

CALLIARI, L.; SPERANSKI, N. Padrões de refração para a costa do Rio Grande do Sul e erosão costeira. **Technical Report.** Atlas de Erosão e Progradação do litoral do Brasil, 2004.

CALLIARI, L. J.; MUEHE, D.; HOEFEL, F. G.; TOLDO JR., E. Morfodinâmica praial: uma breve revisão. **Brazilian Journal of Oceanography**, v. 51, p. 63–78, 2003.

CARTER, R.W.G. Near-future sea level impacts on coastal dune landscapes. Landscape Ecol. N.6, p. 29-39, 1991. Disponível em: https://doi.org/10.1007/BF00157742.

CASTELLE, B.; MASSELINK, G. Morphodynamics of wave-dominated beaches. **Research Group, School of Biological and Marine Sciences**, pp. 1-13, University of Plymouth, Plymouth, UK, 2022. Disponível em: https://doi.org/10.1017/cft.2022.2

CHURCH, J.A.; CLARK, P.U.; CAZENAVE, A.; GREGORY, J.M.; JEVREJEVA, S.; LEVERMANN, A.; MERRIFIELD, M.A.; MILNE, G.A.; NEREM, R.S.; NUNN, P.D.; PAYNE, A.J.; PFEFFER, W.T.; STAMMER, D.; UNNIKRISHNAN, A.S. Sea level change. **Digital Respository Service (DRS)**, 2013. Disponível em: http://drs.nio.org/drs/handle/2264/4605.

COCO, G. Test of self-organization in beach cusp formation. Journal of Geophysical Research, v. 108, n. C3, p. 1–11, 2003.

COWELL, P. J. THOM, B. G. Coastal Evolution - Late quaternary shoreline morphodynamics. In: Morphodynamics of Coastal Evolution. Cambridge, Reino Unido, p. 33-86, 1994.

CROWELL, M.; LEATHERMAN, S.P.; BUCKLEY, M.K. Historical shoreline change: error analysis and mapping accuracy. **Journal of Coastal Research**, v. 7, n. 3, p. 839-852, 1991.

DAVIDSON-ARNOTT, R. An introduction to coastal processes and geomorphology. Cambridge: Cambridge University Press, 2010.

DOMINGUEZ. J.M.L.; BITTENCOURT. A.C.S.P.; MARTIN. L. LIMA, R.C.C.; COSTA. I.V.G. - 19826 - Roteiro de excursão geológica a planície costeira do rio Jequitinhonha e turfeiras associadas. XSXII **Congr. Bras. Geol. Salvador**, Boletim n. 3, p.201-235, 1982.

DOMINGUEZ, J.M.L.; MARTIN, L.; BITTENCOURT, A.C.S.P. Evolução paleogeografia do delta do rio Jequitinhonha durante o Quaternário: influência das variações do nível do mar. In: K. Suguio *et al.* (eds.). Atas do IV Simpósio do Quaternário no Brasil, Rio de Janeiro: p.69-82, 1982.

DEFESA CIVIL DE SANTA CATARINA. Decretação de Situações de Emergência e Estado de Calamidade Pública. Disponível em: <https://www.defesacivil.sc.gov.br/municipios/decretacao-se-ecp/>. Acesso em 10 de fevereiro de 2023.

EPAGRI - Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina. In:PrevisãodoTempo.Florianópolis,2020.Disponívelem<</td>https://ciram.epagri.sc.gov.br/index.php/solucoes/solicitacao-de-dados/>.Acesso em: 12out. 2021;https://ciram.epagri.sc.gov.br/index.php/maregrafos/.Acesso em 24 fev2022.

FALKENBERG, D.B. Aspectos da flora e da vegetação secundária da restinga de Santa Catarina, sul do Brasil. **Insula 28**: 1-30, 1999. Disponível em: https://periodicos.ufsc.br/index.php/insula/article/view/21771/19743.

FENTRESS, J. How Do Tides Work? Live Science, 2017 Disponível em: hhttps://www.livescience.com/37670-how-do-tides-work.html. Acesso em: 09/04/2023.

FRANZ, G. Numerical modelling of hydrodynamics and sediment transport in coastal systems. **Research Gate**, Lisboa/ Portugal, 150p., 2017. Disponível em: DOI - 10.13140/RG.2.2.11485.82403

FREIRE, G.S.S. Atlas de erosão costeira do estado do Ceará. **Technical Report.** Atlas de Erosão e Progradação do litoral do Brasil, 2004.

FRENCH, P.W. Coastal Defences: Processes, Problems And Solutions. Taylor & Francis. Londres, p. 384, 2001.

GALLOP, S.L.; KENNEDY, D.M.; LOUREIRO, C.; NAYLOR, L.A.; MUÑOZ-PÉREZ, J.J.; JACKSON, D.W.T.; FELLOWES T.E. Geologically controlled sandy beaches: Their geomorphology, morphodynamics and classification, **Science of The Total Environment**, v. 731, 2020. Disponível em: https://doi.org/10.1016/j.scitotenv.2020.139123.

GARRISON, T. Fundamentos de oceanografia. São Paulo: Cengage Learning, 2010.

GOBBI, E. F. Gerenciamento costeiro: análise de casos do litoral do Paraná sob a perspectiva da engenharia costeira. Tese de Doutorado (Doutorado em Engenharia Oceânica) - Programa em Engenharia Oceânica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 277 p. 1997.

GODSCHALK, D. R.; NORTON, R.; RICHARDSON, C. & SALVENSEN, D. Avoiding Coastal Hazard Areas: Best State Mitigation Practices. **Environmental Geosciences**, v. 7, n.1, p. 13-22, 2000.

GOOGLE. Timelapse. Google Earth Engine. Análise de Satélite mundial por período anual. Disponível em: https://earthengine.google.com/timelapse/. Acesso em: 20 set. 2022.

GRACIA, A.; RANGEL-BUITRAGO, N.; OAKLEY, J. A.; WILLIAMS, A. T. Use of ecosystems in coastal erosion management. **Ocean & Coastal Management**, v. 156, p. 277–289, 2018.

GRIGGS, G. B. California's Coastal Hazards. Journal of Coastal Research, Special Issue, v.12, p. 1–15, 1996.

HARDISTY, J. Beaches: Form and Process. London: Unwin Hyman, 1990.

HEGGE, B.; ELIOT, I., HSU, J. Sheltered Sandy Beaches of Southwestern Australia. Journal of Coastal Research, Fort Lauderdale, Florida, v. 12, n.3, p.748-760, 1996.

HUNT, E.; DAVIDSON, M.;STEELE, E.C.C.; AMIES, J.D.; SCOTT, T.; RUSSELL, P. **Shoreline modelling on timescales of days to decades.** Cambridge Prisms: Coastal Futures, Londres, Inglaterra, 2023. Disponível em: DOI. 10.1017/cft.2023.

IBGE.Cidades:panorama.s/d.Disponívelem:<https://cidades.ibge.gov.br/brasil/sc/itapoa/panorama>.Acesso em: 20 set. 2021.

INMET. Instituto Nacional de Meteorologia. Ministério da Agricultura, Pecuária e Abastecimento. Brasília, DF, 2021.

INPE - Instituto Nacional de Pesquisas Espaciais. In: Catálogo de Imagens. Brasil. 2017. Disponível em: ">http://www.dgi.inpe.br/CDSR/>. Acesso em: 20 set. 2021.

IPCC. Intergovernmental Panel on Climate Change. UNEP, EUA, 2021. Disponível em: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR_6_WGI_Chapter_08.pdf>. Acesso em: 24 set. 2022.

KING, C.A.M. Dynamics of beach accretion. In: D.R. Coastes (Editor), **Coastal Geomorphology. Libr. Congr. Publ.**, New York, p. 73-98, 1973.

KLEIN R.; NICHOLLS, R. Assessment of Coastal Vulnerability to Climate Change. **Ambio**, v. 28, p.182-187, 1999.

KOMAR, P. D. Handbook of coastal processes and erosion. **Boca Raton**: CCR, p. 304, 1983.

KOMAR, P. D. Beach processes and sedimentation. New Jersey: Englewood Cliffs, 1976.

KOWMANN, R. Variações de curto e longo prazo de um perfil da praia de Copacabana, Rio de Janeiro. **Publicação do Instituto de Pesquisas da Marinha**, Rio de Janeiro, v. 39, p.16, 1970.

LEAL, K. B., ROBAINA, L. E. S., KORTING, T. S., DUTRA, R. C. Desastres Naturais Associados À Erosão E Inundação Costeira: Um Levantamento Para O Estado De Santa Catarina, Brasil. Encontro Nacional de Pós-graduação e Pesquisa em Geografia, 2021.

LEATHERMAN, S. P. Shoreline change mapping and 134 management along the U.S. East Coast. Journal of Coastal Research, (38): 5-13, 2003.

LEATHERMAN, S. P. Barrier Island Handbook. University of Maryland, College Park. 3 ed, 152p., 1988.

Li, X.; Cheng, Y.; Li, D.; Wang, D.; Zhou, J. Effect of wind stress on the tidal dynamics in the Bohai Sea. Acta Oceanologica Sinica, 38(3), 51-57, 2019.

MARENZI, C. R. Ecologia da paisagem da morraria da praia Vermelha (SC): subsídio à conservação da biodiversidade de uma área costeira. Tese de doutorado. Universidade Federal do Paraná. Curitiba, p. 216, 2004.

MARETEC. **MOHID** - Water Modelling System. Disponível em: http://www.mohid.com/>. Acesso em: 14 set. 2021.

MARINHA DO BRASIL. Ministério da Defesa. Disponível em: https://www.marinha.mil.br/dadosabertos. Acesso em: 20 set 2022.

MARTIN, L.; SUGUIO, K.; FLEXOR, J.M.; BITTENCOURT, A.C.S.P.; VILAS BOAS, G.S. Le Quaternaire marin Brésilien (Littoral Pauliste, Sud Fluminense et Bahianais). Cuh. O.R.S. T.O.M., Ser. Géol. v. 11, n. 1, p.95-124, 1980.

MARTÍNEZ, M. L.; INTRALAWAN, A.; VÁZQUEZ, G.; PÉREZ-MAQUEO, O.; SUTTON, P.; LANDGRAVE, R. The coasts of our world: Ecological, economic and social importance. **Ecological Economics**. v. 63, p. 254-272. 2007.

MASSELINK, G.; GEHRELS, R. Coastal Environments and Global Change. Nova Jersey: John Wiley & Sons, Ltd, 2014.

MAZZER, A.M.; DILLENBURG, S. R.; SOUZA, C.R.G. Proposta de método para análise de vulnerabilidade à erosão costeira no sudeste da ilha de Santa Catarina, Brasil. **Revista Brasileira de Geociências** v.38(2), p. 278-294, junho de 2008. Disponível em: https://www.researchgate.net/publication/303299490.

MELO FILHO., E. Maré Meteorológica na Costa Brasileira, Tese Professor Titular, Escola de Engenharia, Universidade Federal de Rio Grande, 328 p, abril 2017.

MMA. MINISTÉRIO DO MEIO AMBIENTE. **Panorama da erosão costeira no Brasil**. Brasília: MMA, 2018. 759 p. Disponível em: https://www.gov.br/mma/pt-br.

MME - MINISTÉRIO DE MINAS E ENERGIA. Ação Emergencial para Delimitação de Áreas em Alto e Muito Alto Risco a Enchentes, Inundações e Movimentos de Massa, Itapoá – SC, Secretaria de Geologia, Mineração e Transformação Mineral Serviço Geológico do Brasil – CPRM Departamento de Gestão Territorial - DEGET 2014.

MOORE, L.J. Shoreline mapping techniques. Journal Coastal Research, v.16(1), p.111-124, 2000.

MUEHE, D. Estado morfodinâmico praial no instante da observação: uma alternativa de identificação. **Revista Brasileira de Oceanografia**. São Paulo. 46(2), p157-169, 1998.

MUEHE, D. Erosão e Progradação do Litoral Brasileiro: Rio Grande do Sul. Ministério do Meio Ambiente, Secretaria de Qualidade Ambiental. Brasília, DF: MMA, 2006.

MUEHE, D. 2011. Erosão Costeira – Tendência ou Eventos Extremos? O Litoral entre Rio de Janeiro e Cabo Frio, Brasil. Revista de Gestão Costeira Integrada - **Journal of Integrated Coastal Zone Management**, Lisboa, Portugal v. 11, n. 3, p. 315-325, 2011.

NASA. National Aeronautics and Space Administration NASA Official: Brian Dunbar. Disponível em https://www.nasa.gov//; https://www.nasa.gov/; https://www.nasa.gov/ NASCIMENTO JÚNIOR, W. R.; ARAÚJO, D. C. Arcos praiais: caracterização e fatores condicionantes. Revista Brasileira de Geomorfologia, 17(1), 131-144, 2016.

NICHOLLS, R, J. Coastal megacities and climate change. GeoJournal 37, 369-379, 1995.

NOAA. National Oceanic and Atmospheric Administration: In: Climate Prediction Center. Maryland, 2020. Disponível em https://www.noaa.gov/;

NOAA. Tides and Water Levels, 2021. Disponível em: https://tidesandcurrents.noaa.gov/. Acesso em: 10/04/2023.

NOBRE, C. A; CAVALCANTI, I. F.A.; GAN, M.A.; NOBRE, P. A; KAYANO, M. T.; RAO, V. B.; BONATTI, J. P.; SATYMURTY, P. UVO, C. B.; COHEN, J. C. Aspectos de Climatologia Dinâmica do Brasil. **Climanálise**, 1986.

OMM., 2022: Organização Meteorológica Mundial. Nações Unidas. Disponível em: http://https://public.wmo.int/en/>. Acesso em: 10 junho 2022.

PERINOTTO, R. R. C., CAMPOS, A. V., BONETTI, J., RUDORFF, F. M. Avaliação do Estado Erosional das Praias de Santa Catarina com base na Análise de Geoindicadores. **Congresso Brasileiro sobre Desastres Naturais**. Rio Claro. Maio, 2012.

PETHICK, J. An introduction to coastal geomorphology. New York: Oxford University Press, 1984.

PILKEY, O.H.; NEAL, W.J.; BUSH, D.M. Coastal Erosion. In: Isla, F.I. & Iribarne, O. (Eds), **Coastal Zone and Estuaries**, EOLSS, UNESCO, pp. 32-42. 540p, 2009.

PIRES, M.C.; CASTRO, M.B.; LIEBER, Z.V.; MENEZES, T.P.; AOKI, R.Y.S. Estatística não paramétrica básica no software R: uma abordagem por resolução de problemas. Departamento de estatística. Universidade Federal de Minas Gerais, 2018.

POLETTE, M.; SOUZA, J. G.; MAZZER, A. M.; MORO, L. F. R. Geoecologia da Paisagem Costeira do Estado de Santa Catarina. In: Regional Conference of Latin American and Caribbean Countries - **International Geographical Union**. Havana/Cuba. p. 200-200, 1995.

PORPILHO, D. Análise da Sedimentologia, variação da linha de costa e perfil praial de Itapoá-SC, Brasil. Dissertação de Mestrado. Itajaí, 84p. 2012. Disponível em: http://siaibib01.univali.br/pdf/Diego%20Porpilho.pdf

PREFEITURA DE ITAPOÁ. Portal do Município de Itapoá. Disponível em: br/>https://www.itapoa.sc.gov.br/>https://www.sc.gov.br/>https://wwww.sc.gov.br/>https://www.sc.gov.br/>https://www.sc.gov.br

PROCOSTA, 2018: Programa Nacional de Conservação da Linha de Costa. Ministério do Meio Ambiente. Disponível em: https://antigo.mma.gov.br/images/arquivos/gestao_territorial/Procosta/PROCOSTAversao_digital.pdf RELATÓRIO DE IMPACTO AMBIENTAL. EIA-RIMA. Porto de Itapoá, 2011. Disponível em: file:///C:/Users/Di/Desktop/ultimos%20artigoss/RIMA%20porto.pdf. Acesso em: 20/01/2023.

RELATÓRIO DE IMPACTO AMBIENTAL. EIA-RIMA. Regularização Fundiária das Glebas, 2015. Disponível em: file:///C:/Users/Di/Desktop/ultimos%20artigoss/2323205_EIA_RIMA_GLEBAS_I_e_I I.pdf. Acesso em: 20/01/2023.

RELATÓRIO DE IMPACTO AMBIENTAL. EIA-RIMA. Tratamento de águas -Saneamento, 2015. Disponível em: file:///C:/Users/Di/Desktop/ultimos%20artigoss/465399_RIMA_ETA_Itapoa_Saneame nto_01_02_15.pdf. Acesso em: 20/01/2023.

RELATÓRIO DE IMPACTO AMBIENTAL. EIA-RIMA. Tratamento de águas -Saneamento, 2020. Disponível em: file:///C:/Users/Di/Desktop/ultimos%20artigoss/EIA%20SES%20ITAPO%C3%81.pdf. Acesso em: 20/01/2023.

ROSUMEK, F.B.; CANTO, L. M.; FARIA, P.E.P.; MOZERLE, H.B.; MATOS, J.J.; FARIA JÚNIOR, E.; GONÇALVES, F.O.; RIZZATO, G.A. Associação entre Liolaemus Occipitalis (Squamata: Tropiduridae) e a Vegetação de Restinga, e sua Importância para a Conservação, nas Dunas da Praia da Joaquina, Ilha de Santa Catarina, Sul do Brasil. Anais do VIII Congresso de Ecologia do Brasil, Caxambu – MG, set 2007. Disponível em: https://www.researchgate.net/publication/242171009.

RUDORFF, F. M.; BONETTI, J. Avaliação da Suscetibilidade à Erosão Costeira de Praias da Ilha de Santa Catarina. **Braz. J. Aquat. Sci. Technol.** Florianópolis. v. 14, n.1, p. 9-20, 2010.

SANTOS, M. S. T.; AMARO, V. E.; FERREIRA, A.T.S.; BARBOZA A.A.; FIGUEIREDO, M. C.; ARAÚJO, A.G. Metodologia Para Mapeamento de Vulnerabilidade Costeira à Elevação do Nível Médio do Mar (NMM) Em Escala Local. **Bol. Ciênc. Geod.,** sec. Artigos, Curitiba, v. 21, n. 4, p.691-705, out-dez, 2015. Disponível em: http://dx.doi.org/10.1590/S1982-21702015000400040.

SCHMIDT, A.D.; HORN FILHO, N.O.; ESTEVAM, C.N. Estratégias adotadas para conter a erosão costeira no litoral de Santa Catarina, Brasil. Engenharia e proteção costeira, 2012.

SEA OBSERVATORY. Sea Observatory and operational modelling system for the south-eastern Brazilian shelf. Observatório do Mar. Dez, 2019. Disponível em: ile:///C:/Users/Di/Downloads/L2'-FinalReport_update_v1.pdf.

SERAFIM, M. B.; BONETTI, J. Vulnerabilidade das Praias do Estado de Santa Catarina e Eventos de Erosão e Inundação Costeira: Proposta Metodológica Baseada em Índice Multicritérios. **Quaternary and Environmental Geosciences**, v.8, n.2, 2017. Disponível em: http://dx.doi.org/10.5380/abequa.v8i2.47281.

SHEPARD, F. P.; INMAN, D. L. Near-shore circulation related to bottom topography. Transactions of the American Geophysical Union, v. 31, n. 4, p. 555–565, 1950.

SILVA, L.M.; GONÇALVES, R.M.; LIRA, M.M.S.; PEREIRA, P. S. Modelagem Fuzzy Aplicada na Detecção da Vulnerabilidade à Erosão Costeira. **Bol. Ciênc. Geod.**, sec. Artigos, Curitiba, v. 19, n. 4, p.746-764, out-dez, 2013. Disponível em: http://dx.doi.org/10.1590/S1982-217020130004000014.

SILVEIRA, R.B.; ALVES, M. P. A.; BITENCOURT, V. J. B. Erosão Costeira e Storm Surge em Itapoá - SC: Uma Análise Episódica. **Geografia Física e as Mudanças Globais**, Fortaleza, 2019.

SIMCOSTA. Portal SiMCosta. Monitoramento dos Complexos Estuarinos de Paranaguá e da costa brasileira Sistema de Monitoramento. Disponível em: https://simcosta.furg.br/home. Acesso em: 01 set 2022.

SUGUIO, K., MARTIN. L. e DOMINGUEZ, J.M.L. Evolução do delta do rio Doce (ES), durante o Quaternário: influência das flutuações do nível do mar. In: K. Suguio *et al.*, (eds.), Simpósio do Quaternário no Brasil, Rio de Janeiro, p. 93-116, 1982.

TESSLER, M. G., GOYA, S. C. Processos Costeiros Condicionantes do Litoral Brasileiro. **Revista Departamento de Geografia**. São Paulo. v. 17, p. 11-23, 2005.

TESSLER, M.G.; GOYA, S.C.; YOSHIKAWA, P.S. e HURTADO, S.N., 2004. Atlas de Erosão e Progradação Costeira do Litoral do Estado de São Paulo. Technical Report. Atlas de Erosão e Progradação do litoral do Brasil, 2004.

TOMINAGA, Y.; OKAZE, T.; MOCHIDA, A. Wind tunnel experiment and CFD analysis of sand erosion/deposition due to wind around an obstacle, Journal of Wind Engineering and Industrial Aerodynamics, v.182, p.262-271, 2018. Disponível em: https://doi.org/10.1016/j.jweia.2018.09.008.

USGS. Earth Explorer. US. Departament of the interior. Disponível em: https://earthexplorer.usgs.gov/. Acesso em 20 de setembro de 2022.

VAN MAANEN, B. NICHOLLS, J. R. FRENCH, J. R. BARKWITH, A. BONALDO, D. BURNINGHAM, H. MURRAY, A. B. PAYO, A. SUTHERLAND, J. THORNHILL, G. TOWNEND, M. H. VAN DER WEGEN, M. WALKDEN, M. J. A. Simulating mesoscale coastal evolution for decadal coastal management: A new framework integrating multiple, complementar modelling approaches. Reino Unido. **Geomorphology**, v. 256 p. 68-80, 2016.

VEDANA, J.; PAIOTTI, M.; SCHVAMBACH, A. Relação da intensidade e direção do vento com a maré meteorológica. **Revista Metodologias do Aprendizado**, v. 4, 2021. Disponível em: DOI: 10.21166/metapre.v1i.1455

VITAL, H., 2004. Atlas de erosão e progradação costeira do litoral do estado do Rio Grande do Norte. Technical Report. Atlas de Erosão e Progradação do litoral do Brasil. 2004.

VITORINO, J.; BERTIN, X.; ALMEIDA, A.; DIAS, J. The influence of wind on tidal

propagation and sea level variability in a shallow estuary. Continental Shelf Research, 24(17), 2251-2266, 2004.

WERNER, B. T.; FINK, T. M. Self-Organized Patterns. Science, v. 260, p. 968–971, 1993.

YIN, B.; CHEN, M.; ZHANG, X.; LI, Z. Wind-induced sea level variations and their impacts on tide-surge residuals in the Bohai Sea, China. Ocean Dynamics, 68(5), 659-673, 2018.

ZASSO, L.A.; BARBOSA, E.G; GRUBER, N.L.S. Alterações na Deriva Litorânea e no Balanço Sedimentar Adjacências do Molhes do Rio Mampituba/ RS-SC. Porto Alegre, **Gravel**, v. 11, n. 1, p. 1-17, 2013.

ANEXO 1 – PONTO 01

FONTE: O autor (2022)

ANEXO 2 - PONTO 02

FONTE: O autor (2022)

ANEXO 3 - PONTO 03

FONTE: O autor (2022)

ANEXO 4 - PONTO 04

FONTE: O autor (2022)

ANEXO 5 - PONTO 05

FONTE: O autor (2022)

ANEXO 6 - PONTO 06

FONTE: O autor (2022)

ANEXO 7- PONTO 07

ANEXO 8 - PONTO 08

FONTE: O autor (2022)

ANEXO 9 - PONTO 09

FONTE: O autor (2022)

99 05 2022 11:47 5 18416, -48.61465 . Beira Mar 5, 3334 - SC, 89249-000

Barrie B	60208					741 - Padrão - ILHA DA PAZ - 6020	08 - Versão 1/2020
	F-41	DE	ISCRIÇÃO DE I	ESTAÇÃO MAR	EGRÁFICA		F-41 - 1804 - 001/18
Estação: ILHA I	DA PAZ	Estado: SC	Localidade: 580	Francisco do Sul			
LH Carta	1: 1804 - Porto de	São Francisco do Sul	Navie: D	05-NE	Ano: 1972		
Coordenadas g Lat: 26º 10'. 7 S	geográficas	O mivel de redução esta 86.55 centimetros acima do ze	ero da rêgua.				
Long: 048° 29'. 1 W		Foute de informação: Auslise estatistica e harmônica d Tino de mesterelo: Reder OTT	de 608 diss de obse	rvação da marê			
Datum Fuse: +03		Zero do martegrafo: está a 79,4 cm acima do zero da rej	115				
	- Pe	crição da régua de marés			Descrição	das referências de nível	
Regua maregrafica graduapões de 1 e acima do zero da r proximo ao radar. Esta ficha foi comp 1804-002/02, F-41	a de PVC, padråk im 1 cm. As seçå régua, que por su régua, que por su régua, que por su regua, que por su regua, que por su	o Hidromec, com 4 m de comprimento e dividida em si es estão afixadas em uma base de madeira, totalizan ia vez, foi instalada na extremidade do pier de acesso DHN-5503 de 1972, das F-41-1804-001/81, F-41-180 41-1804-Beiov Engenharta-001/19, Atualizada em 27//	egdes de 11m, do 408,5 cm i A. 11ha, 14-002/94, F-41- 107/2020.	RN HT 1 - CIIndin acesso. RN-4 DHN - Craw RN1-DHN - Fixad trapiche, no sentit RN HT 2 - CIIndin RN HT 2 - CIIndin RN-2 DHN 1994 - RN-2 DHN 1994 - RN-2 DHN 1991 - de diametro e 10 no lado oposto da no lado oposto da rou 2 DHN 1972 - RN HT 3 - CIIndin roi alateral direita d RN-2 DHN 1972 -	o de Alumínio, analogo a i ada sobre uma pedra a di a sobre uma piar de conor do de quem val para o fario de quem val para o fario encontra-se inoperante po oncontra-se inoperante po cravada no piso a esque da numa base de cimento posto da RN1-DHN. Impla fRN2-DHN. Citada a parti fRN1-DHN. Citada a parti o RA1-DHN. Citada a parti o RA1-DHN. Citada a parti o RA1-DHN. Citada a parti so da Alumínio, analogo a F a garagem de barcos (visi Situada em uma pedra a	N padrão DHN, concretada em un reita do pier. Impliantada em 1994. eto, de 40 cm d atturi, localizado n ol. Citada a partir de 1972. Citada a partir de 1972. r va padrão DHN, instalada na ramp r da oportão do gajaão dos barcos rada de portão do gajaão dos barcos rada em 1994. a base de cimento, com uma seção re uma pedra distante cerca de 81 r de 1981. R padrão DHN, instalada em um t va portadamente 35 m da RN1-D aproximadamente 35 m da RN1-D	ma pedra proxima a ponte de io lado esquerdo do pa de acesso à garagem de o mar. s. Implantada em 1994. Be 8 m da garagem de be across, bloco de concreto, Instalado VHN do mesmo lado a
				caminho do Farol	. Citada a partir de 1972		
DHN-6016-A	Arquivo Técu Documento di LH-014181 - L1 LH-006/02 - R RA 343/18 RA 197/2020	ico a ser preenchida no CHM e referência: H-008/94 A-029/02		1. Período de obs 2. A anàlise foi eñ 3. O offiset de 398 4. ESTAÇÃO ATI	ervação para obtenção d etuada utilizando o métod 1,4 cm no maregrafo radar VA	Observações se elementos de mare: 01/01/2017 se harmónico, sendo os dados proo: fol informado pela EPA/GRI.	a 31/08/2018. essados pelo BNDO.

ANEXO 10 - MARÉGRAFO DA ILHA DA PAZ

Series.	60219	F41 - Padrão - PORTO DE ITAPOA - 60219 - Versão 1/2019
	F-41 DESCRI	ÇÂO DE ESTAÇÃO MAREGRÁFICA
Estação: PORTO LH Carta:) DE ITAPOA 1804 Porto de São Francisco do Sal	idade: Itapoa Navio: HIDROTOP Ano: 2018
Coordenadas ge Lat: 26° 11'. 1 S Long: 048° 36'.4 W Datum Fuuo: +03	ográfiicas O mrei de redução esta 62.79 centimetros acima do zero da r Fonte de informação: Analize estatística e harmônica de 608 d Tipo de martgrafo: Radar - OTT Zero do martgrafo: esta a 56,1 cm acima do zero da rtgua	Egua. is: de observação
	Descrição da régua de marés	Descrição das referências de nível
Regua maregrafica graduações de 1 en acima do zero da re	de PVC, padrão Hidromeo, com 4 m de comprimento e dividida em seções o n 1 cm. As seções estão afixadas em uma base de madeira, totalizando 400, gua, que por sua vez, foi fixada no tubo tranquilizador da estação.	 FIN. RN 2 DHN - RN padrão DHN, cravada no piso do corredor esquerdo de passagem de pedestre da ponte de acesso ao cais, a cerca de 29 m depois da RN I(DHN). RN 1 DHN - RN padrão DHN, cravada no piso do corredor esquerdo de passagem de pedestre, da ponte de acesso ao cais, a cerca de 27 m depois da estação maregráfica. HT 2 - Cilindro de Aluminio, análogo à RN padrão DHN, cravada em 2018, no piso do corredor de passagem de pedestre, na ponte de acesso ao cais, na altura da estação maregráfica (lado oposto). HT 1 - Cilindro de Aluminio, análogo à RN padrão DHN, cravada em 2018, no piso do corredor de passagem de pedestre da ponte de acesso ao cais, na altura da estação maregráfica (lado oposto). HT 1 - Cilindro de Aluminio, análogo à RN padrão DHN, cravada em 2018, no piso do corredor de passagem de pedestre da ponte de acesso ao cais (esquerdo de quem entra), a cerca de 30 m antes da estação maregráfica. Radar I - Cilindro de atar localizado na ponte de acesso ao cais, incipiso do corredor de passagem de estação maregráfica. Radar - Nivelado a face inferior do radar localizado na ponte de acesso ao cais, incipis do iado esquerdo de quem entra). VE 1385 - Cinapa metálica, com as inscripões Vector VE 1385, instalada no inicio da ponte de acesso ao cais, proximo à mureta de proleção, à esquerda de quem entra.
DHN-6016-A	Arquivo Técnico a ser preenchida no CHM Documento de referência: RA 343_2018	Observações 1. Período de observação para obtenção do NNel de Redução : 01/01/2017 a 31/08/2018. 2. A análise harmónica foi feita utilizando-se o software Pacmaré. 3. Offset do marégrafo (531,8 cm) informado pela EPAGRI.

ANEXO 11 - MARÉGRAFO DE ITAPOÁ

and the second	60 100		F-41 - Padrão - Guaratuba Ia	te Clube - Versão 1/2011
	F-41	DESCRIÇÃO DE ESTAÇÃO M	VIAREGRÁFICA	F - 41 - 1803 - 001/95
Estação Guarati	tha Late Clube	Estado Pi	R. Localidad	e Baía de Guzratuba
LH 018/95		Carta Nº, 1803 - Baía de Guarahúba	Navio LHFC-CAHO/95	Ашо 1995
Coordenadas g	eográficas	O uível de redução está 264,2 (cm centímetros acima do zero da régua 1995.	
Lat 25° 52' 4 T 0.48° 34' 8	200	Fonte de informação: Análise estat	lística e Harmónica de 29 días de observação de maré.	
Datum		Tipo de marégrafo: HIDROLOGIA	DIÁRIO ESC 1:20	
Fuso +3		Zero do marégrafo: Coincide d	lo zero da régua.	
	Descrição das n	éguas de marés	Descrição das referências de n	úvel
Rêgua de m complemento modelo D	arés graduada d	e 10 cm em 10 cm, com 5 metros de	KNL-DHN - Localizates as lade do sallo do "Bar dos Maut o mar, localiza-te no lado esquardo do lado de fora do bar). I	mosos", (posicioanndo-se de frente para Implantada em 1995.
		de la secondecidad de la secondecidad de	RN2-DHN - Localizado no interior da casa do guincho, en em 1995.	a frante à rampa dos barcos. Implantada
27/09/2011.	ioi comprisos	da F-41-1000-001/00. Alualizada em	RN3-DHN – Localizado entre as gungens de barcos nº 70 mar, seguir em frante subindo a nampa dos barcos). Implants	e 71 (posicionando-se de costas para o ota em 1995.
			MT-60030 - Localizado no pter. Sem descrição. Implantad:	o em 1995.
	Armine Tée	MUT on this answering to a CUM	Pessoal que tomou parte na moutagem	
		mico a ser preencinga no crim	Prof Ganido	
	Recebida em:		ITen L. Clandio - ITen Carvalho	
DHN-6016-A	Documento d	le referência: IH-018/95 – R.A-077/95	Chefe da equipe: IT Limharas	

ANEXO 12 - MARÉGRAFO DE GUARATUBA

ANEXO 13 - IMAGEM DE SATÉLITE LANDSAT 1984

ANEXO 14 - IMAGEM DE SATÉLITE LANDSAT 1985

ANEXO 15 - IMAGEM DE SATÉLITE LANDSAT 1986

ANEXO 16 - IMAGEM DE SATÉLITE LANDSAT 1987

Itapoá 1988 Linha de Costa de Itapoá-SC Å N Google Earth Itapoá 1988 Linha de Costa de Itapoá-SC Å N Google Earth

ANEXO 17 - IMAGEM DE SATÉLITE LANDSAT 1988

ANEXO 18 - IMAGEM DE SATÉLITE LANDSAT 1989

ANEXO 19 - IMAGEM DE SATÉLITE LANDSAT 1990

ANEXO 20 - IMAGEM DE SATÉLITE LANDSAT 1991

ANEXO 21 - IMAGEM DE SATÉLITE LANDSAT 1992

ANEXO 22 - IMAGEM DE SATÉLITE LANDSAT 1993

ANEXO 23 - IMAGEM DE SATÉLITE LANDSAT 1994

ANEXO 24 - IMAGEM DE SATÉLITE LANDSAT 1995

ANEXO 26 - IMAGEM DE SATÉLITE LANDSAT 1997

ANEXO 27 - IMAGEM DE SATÉLITE LANDSAT 1998

ANEXO 28 - IMAGEM DE SATÉLITE LANDSAT 1999

ANEXO 29 - IMAGEM DE SATÉLITE LANDSAT 2000

ANEXO 30 - IMAGEM DE SATÉLITE LANDSAT 2001

ANEXO 31 - IMAGEM DE SATÉLITE LANDSAT 2002

ANEXO 32 - IMAGEM DE SATÉLITE LANDSAT 2003

ANEXO 33 - IMAGEM DE SATÉLITE LANDSAT 2004

ANEXO 34 - IMAGEM DE SATÉLITE LANDSAT 2005

ANEXO 35 - IMAGEM DE SATÉLITE LANDSAT 2006

ANEXO 36 - IMAGEM DE SATÉLITE LANDSAT 2007

ANEXO 37 - IMAGEM DE SATÉLITE LANDSAT 2008

ANEXO 38 - IMAGEM DE SATÉLITE LANDSAT 2009

ANEXO 39 - IMAGEM DE SATÉLITE LANDSAT 2010

ANEXO 40 - IMAGEM DE SATÉLITE LANDSAT 2011

ANEXO 41 - IMAGEM DE SATÉLITE LANDSAT 2012

ANEXO 42 - IMAGEM DE SATÉLITE LANDSAT 2013

ANEXO 43 - IMAGEM DE SATÉLITE LANDSAT 2014

ANEXO 44 - IMAGEM DE SATÉLITE LANDSAT 2015

ANEXO 45 - IMAGEM DE SATÉLITE LANDSAT 2016

ANEXO 46- IMAGEM DE SATÉLITE LANDSAT 2017

ANEXO 47 - IMAGEM DE SATÉLITE LANDSAT 2018

ANEXO 48 - IMAGEM DE SATÉLITE LANDSAT 2019

ANEXO 49 - IMAGEM DE SATÉLITE LANDSAT 2020

ANEXO 50 - IMAGEM DE SATÉLITE LANDSAT 2022

ANEXO 51 - Resultado dos Transectos do PONTO 01 ao PONTO 09 em diferentes escalas.

ANEXO 52 – RESULTADO DA ANÁLISE DSAS (CADA ID REPRESENTA UM TRANSECTO) – PONTO 01

ID	Latitude inicial	Longitude inicial	Latitude final	Longitude final	Data inicial	Data final	Intercepto	Inclinação	r²	LRR	SCE	NSM	EPR	Classe
1	-259.778	-485.923	-259.765	-486.001	01/01/1970	01/01/1970	NaN	NaN	0.0000	0.0000	0.0000	0.0000	0.0000	Stable
2	-259.787	-485.924	-259.774	-486.003	01/01/1970	01/01/1970	NaN	NaN	0.0000	0.0000	0.0000	0.0000	0.0000	Stable
3	-259.799	-485.927	-259.780	-486.004	01/01/1970	01/01/1970	NaN	NaN	0.0000	0.0000	0.0000	0.0000	0.0000	Stable
4	-259.808	-485.930	-259.788	-486.007	01/01/1970	01/01/1970	NaN	NaN	0.0000	0.0000	0.0000	0.0000	0.0000	Stable
5	-259.816	-485.933	-259.797	-486.010	01/01/1970	01/01/1970	NaN	NaN	0.0000	0.0000	0.0000	0.0000	0.0000	Stable
6	-259.825	-485.935	-259.806	-486.013	01/01/1970	01/01/1970	NaN	NaN	0.0000	0.0000	0.0000	0.0000	0.0000	Stable
7	-259.834	-485.938	-259.814	-486.015	01/01/1970	01/01/1970	NaN	NaN	0.0000	0.0000	0.0000	0.0000	0.0000	Stable
8	-259.842	-485.941	-259.823	-486.018	01/01/1970	01/01/1970	NaN	NaN	0.0000	0.0000	0.0000	0.0000	0.0000	Stable
9	-259.851	-485.944	-259.832	-486.021	01/01/1970	01/01/1970	NaN	NaN	0.0000	0.0000	0.0000	0.0000	0.0000	Stable
10	-259.860	-485.946	-259.840	-486.023	01/01/1970	01/01/1970	NaN	NaN	0.0000	0.0000	0.0000	0.0000	0.0000	Stable
11	-259.868	-485.949	-259.849	-486.026	01/01/1970	01/01/1970	NaN	NaN	0.0000	0.0000	0.0000	0.0000	0.0000	Stable
12	-259.877	-485.952	-259.857	-486.029	01/01/1970	01/01/1970	NaN	NaN	0.0000	0.0000	0.0000	0.0000	0.0000	Stable
13	-259.884	-485.954	-259.868	-486.032	01/01/1970	01/01/1970	NaN	NaN	0.0000	0.0000	0.0000	0.0000	0.0000	Stable
14	-259.893	-485.956	-259.877	-486.034	01/01/1970	01/01/1970	NaN	NaN	0.0000	0.0000	0.0000	0.0000	0.0000	Stable
15	-259.902	-485.958	-259.885	-486.036	01/01/1970	01/01/1970	NaN	NaN	0.0000	0.0000	0.0000	0.0000	0.0000	Stable
16	-259.911	-485.961	-259.894	-486.039	01/01/1970	01/01/1970	NaN	NaN	0.0000	0.0000	0.0000	0.0000	0.0000	Stable
17	-259.919	-485.963	-259.903	-486.041	01/01/1970	01/01/1970	NaN	NaN	0.0000	0.0000	0.0000	0.0000	0.0000	Stable
18	-259.928	-485.965	-259.912	-486.043	01/01/1970	01/01/1970	NaN	NaN	0.0000	0.0000	0.0000	0.0000	0.0000	Stable
19	-259.937	-485.968	-259.920	-486.045	01/01/1970	01/01/1970	NaN	NaN	0.0000	0.0000	0.0000	0.0000	0.0000	Stable
20	-259.946	-485.970	-259.929	-486.048	01/01/1970	01/01/1970	NaN	NaN	0.0000	0.0000	0.0000	0.0000	0.0000	Stable
21	-259.954	-485.972	-259.938	-486.050	01/01/1970	01/01/1970	NaN	NaN	0.0000	0.0000	0.0000	0.0000	0.0000	Stable
22	-259.975	-485.984	-259.933	-486.049	01/01/1970	01/01/1970	NaN	NaN	0.0000	0.0000	0.0000	0.0000	0.0000	Stable
23	-259.982	-485.989	-259.941	-486.055	20/05/2022	20/05/2022	NaN	NaN	0.0000	0.0000	0.0000	0.0000	0.0000	Stable

24	-259.964	-485.988	-259.973	-486.067	20/05/2022	20/05/2022	NaN	NaN	0.0000	0.0000	0.0000	0.0000	0.0000	Stable
25	-259.973	-485.987	-259.982	-486.066	12/05/2022	20/05/2022	1.079.016.360	-24.139	0.0000	-8.810.690	193.104	-193.104	-8.816.543	Critically Eroded
26	-259.982	-485.986	-259.991	-486.065	12/05/2022	20/05/2022	-250.084.142	0.5605	0.0000	2.045.828	44.839	44.839	2.047.187	Accreted
27	-259.991	-485.984	-260.000	-486.064	09/05/2015	20/05/2022	-6.999.356	0.0172	0.9135	62.635	548.557	548.557	78.020	Accreted
28	-260.011	-485.985	-259.999	-486.064	09/05/2015	20/05/2022	565.525	-0.0003	0.0008	-0.0954	288.470	-57.787	-0.8219	Stable
29	-260.020	-485.986	-260.007	-486.065	09/05/2015	20/05/2022	-1.334.693	0.0042	0.1020	15.441	423.526	164.031	23.330	Accreted
30	-260.028	-485.988	-260.016	-486.067	09/05/2015	20/05/2022	-827.834	0.0030	0.0916	10.944	314.746	114.368	16.266	Accreted
31	-260.037	-485.990	-260.025	-486.069	09/05/2015	20/05/2022	-469.434	0.0021	0.0786	0.7618	235.659	44.698	0.6357	Accreted
32	-260.046	-485.991	-260.034	-486.070	09/05/2015	20/05/2022	244.551	0.0002	0.3250	0.0736	10.405	0.0000	0.0000	Stable
33	-260.057	-485.993	-260.042	-486.072	29/05/2005	20/05/2022	-1.953.815	0.0053	0.8147	19.166	345.744	345.744	20.368	Accreted
34	-260.065	-485.996	-260.051	-486.074	09/07/1985	20/05/2022	-828.915	0.0029	0.7854	10.485	480.861	480.861	13.044	Accreted
35	-260.074	-485.998	-260.059	-486.076	09/07/1985	20/05/2022	-316.178	0.0017	0.6420	0.6327	297.593	267.489	0.7256	Accreted
36	-260.083	-486.000	-260.068	-486.078	09/07/1985	20/05/2022	-379.340	0.0019	0.5814	0.6811	370.782	370.782	10.058	Accreted
37	-260.092	-486.002	-260.077	-486.080	09/07/1985	20/05/2022	-344.570	0.0018	0.4605	0.6627	436.924	331.578	0.8995	Accreted
38	-260.101	-486.004	-260.086	-486.082	09/07/1985	20/05/2022	-286.400	0.0016	0.5067	0.5937	339.141	281.613	0.7639	Accreted
39	-260.109	-486.006	-260.095	-486.084	09/07/1985	20/05/2022	-405.656	0.0019	0.7085	0.6842	321.315	304.981	0.8273	Accreted
40	-260.118	-486.008	-260.103	-486.086	09/07/1985	20/05/2022	-364.551	0.0017	0.8524	0.6383	295.009	275.048	0.7461	Accreted
41	-260.127	-486.010	-260.112	-486.088	09/07/1985	20/05/2022	-296.502	0.0016	0.7494	0.5831	301.503	222.741	0.6042	Accreted
42	-260.135	-486.012	-260.122	-486.090	09/07/1985	20/05/2022	-265.980	0.0015	0.6252	0.5640	325.522	212.031	0.5752	Accreted
43	-260.144	-486.014	-260.131	-486.092	09/07/1985	20/05/2022	-277.440	0.0016	0.5488	0.5782	344.286	215.444	0.5844	Accreted

ANEXO 53 – RESULTADO DA ANÁLISE DSAS (CADA ID REPRESENTA UM TRANSECTO) – PONTO 02

ID	Latitude inicial	Longitude inicial	Latitude final	Longitude final	Data inicial	Data final	Intercepto	Inclinação	r²	LI	RR S	SCE	NSM	EPR	Classe
44	-260.153	-486.015	-260.140	-486.094	09/07/1985	20/05/2022	-158.823	0.0013	0.3608	0.4	702 36	7.224	161.544	0.4382	Stable

45	-260.162	-486.017	-260.148	-486.096	09/07/1985	20/05/2022	-43.148	0.0010	0.3301	0.3684	307.026	160.790	0.4362	Stable
46	-260.171	-486.019	-260.157	-486.098	09/07/1985	20/05/2022	-40.000	0.0009	0.1832	0.3280	390.843	176.413	0.4786	Stable
47	-260.179	-486.021	-260.167	-486.100	09/07/1985	20/05/2022	35.871	0.0007	0.2079	0.2623	293.286	115.585	0.3136	Stable
48	-260.188	-486.022	-260.176	-486.101	09/07/1985	20/05/2022	67.287	0.0006	0.2813	0.2307	206.719	105.301	0.2857	Stable
49	-260.199	-486.025	-260.182	-486.103	09/07/1985	20/05/2022	94.834	0.0006	0.2683	0.2147	166.880	139.386	0.3781	Stable
50	-260.208	-486.026	-260.189	-486.103	09/07/1985	20/05/2022	183.756	0.0003	0.1603	0.1076	122.477	82.561	0.2240	Stable
51	-260.223	-486.031	-260.192	-486.104	09/07/1985	20/05/2022	231.543	0.0005	0.1037	0.1804	258.980	83.000	0.2252	Stable
52	-260.223	-486.029	-260.209	-486.108	09/07/1985	20/05/2022	321.095	0.0001	0.0155	0.0470	175.289	43.461	0.1179	Stable
53	-260.232	-486.031	-260.218	-486.110	09/07/1985	20/05/2022	170.142	0.0006	0.1566	0.2135	260.239	67.403	0.1828	Stable
54	-260.240	-486.032	-260.228	-486.111	09/07/1985	20/05/2022	404.379	-0.0000	0.0000	-0.0015	224.426	55.485	0.1505	Stable
55	-260.249	-486.034	-260.237	-486.113	09/07/1985	20/05/2022	683.728	-0.0007	0.2262	-0.2448	244.368	47.096	0.1278	Stable
56	-260.256	-486.035	-260.247	-486.115	09/07/1985	20/05/2022	846.599	-0.0010	0.2913	-0.3505	291.901	-13.281	-0.0360	Stable
57	-260.269	-486.038	-260.252	-486.116	09/07/1985	20/05/2022	518.577	-0.0002	0.0180	-0.0608	210.876	-24.894	-0.0675	Stable
58	-260.274	-486.038	-260.266	-486.118	09/07/1985	20/05/2022	417.277	0.0000	0.0002	0.0094	316.077	-28.517	-0.0774	Stable
59	-260.284	-486.040	-260.273	-486.119	09/07/1985	20/05/2022	531.016	-0.0003	0.0682	-0.0994	156.117	-0.7741	-0.0210	Stable
60	-260.292	-486.041	-260.283	-486.120	09/07/1985	20/05/2022	698.142	-0.0008	0.4164	-0.2868	215.010	0.0000	0.0000	Stable
61	-260.304	-486.042	-260.289	-486.121	09/07/1985	20/05/2022	609.940	-0.0006	0.2946	-0.2016	174.347	-0.5081	-0.0138	Stable
62	-260.304	-486.043	-260.307	-486.123	09/07/1985	20/05/2022	675.149	-0.0007	0.3419	-0.2459	207.096	-26.680	-0.0724	Stable
63	-260.301	-486.046	-260.326	-486.121	09/07/1985	20/05/2022	717.112	-0.0008	0.4247	-0.2938	209.101	-75.548	-0.2049	Stable
64	-260.328	-486.046	-260.316	-486.125	09/07/1985	20/05/2022	790.178	-0.0009	0.4162	-0.3141	222.282	-69.615	-0.1888	Stable
65	-260.336	-486.046	-260.326	-486.126	09/07/1985	20/05/2022	715.379	-0.0009	0.3353	-0.3113	222.352	-110.080	-0.2986	Stable
66	-260.345	-486.047	-260.334	-486.126	09/07/1985	20/05/2022	527.819	-0.0005	0.1993	-0.1852	174.140	-60.382	-0.1638	Stable
67	-260.354	-486.049	-260.342	-486.128	09/07/1985	20/05/2022	700.223	-0.0007	0.2072	-0.2644	217.920	-56.345	-0.1528	Stable
68	-260.361	-486.049	-260.353	-486.129	09/07/1985	20/05/2022	535.000	-0.0005	0.1737	-0.1677	186.212	-51.915	-0.1408	Stable
69	-260.370	-486.051	-260.361	-486.130	09/07/1985	20/05/2022	503.494	-0.0004	0.0902	-0.1409	212.205	-0.5421	-0.0147	Stable
70	-260.381	-486.052	-260.368	-486.131	09/07/1985	20/05/2022	743.066	-0.0009	0.2243	-0.3448	297.542	-212.761	-0.5772	Stable
71	-260.386	-486.053	-260.382	-486.133	09/07/1985	20/05/2022	845.754	-0.0012	0.5469	-0.4302	268.007	-176.658	-0.4792	Stable
72	-260.398	-486.054	-260.388	-486.134	09/07/1985	20/05/2022	854.675	-0.0012	0.6272	-0.4556	268.028	-173.722	-0.4713	Stable
12	200.570	+00.00+	200.000	400.104	05/07/1505	20/03/2022	004.075	0.0012	0.0272	0.4000	200.020	175.722	0.47	10

73	-260.406	-486.055	-260.398	-486.135	09/07/1985	20/05/2022	829.334	-0.0012	0.6447	-0.4	379	264.935	-105.221	-0.2854	Stable
74	-260.415	-486.056	-260.407	-486.136	09/07/1985	20/05/2022	743.077	-0.0009	0.2089	-0.3	299	383.836	-87.634	-0.2377	Stable
75	-260.423	-486.058	-260.416	-486.137	09/07/1985	20/05/2022	443.269	-0.0002	0.0224	-0.0	633	225.425	-65.124	-0.1767	Stable
76	-260.432	-486.059	-260.425	-486.138	09/07/1985	20/05/2022	501.136	-0.0003	0.0766	-0.1	178	231.706	-73.701	-0.1999	Stable
77	-260.441	-486.059	-260.434	-486.139	09/07/1985	20/05/2022	482.904	-0.0004	0.0691	-0.1	285	245.547	-94.888	-0.2574	Stable
78	-260.450	-486.060	-260.443	-486.140	09/07/1985	20/05/2022	473.848	-0.0004	0.0780	-0.1	325	242.371	-82.581	-0.2240	Stable
79	-260.460	-486.061	-260.452	-486.141	09/07/1985	20/05/2022	573.758	-0.0007	0.1945	-0.2	475	261.006	-138.665	-0.3762	Stable
80	-260.468	-486.062	-260.460	-486.142	09/07/1985	20/05/2022	371.207	-0.0002	0.0137	-0.0	658	262.024	-22.062	-0.0598	Stable
81	-260.476	-486.063	-260.471	-486.143	09/07/1985	20/05/2022	261.952	0.0001	0.0091	0.0	521	242.351	-0.2384	-0.0065	Stable
82	-260.486	-486.064	-260.479	-486.144	09/07/1985	20/05/2022	249.799	0.0000	0.0004	0.0	111	244.121	-37.836	-0.1026	Stable
83	-260.495	-486.065	-260.488	-486.145	09/07/1985	20/05/2022	575.789	-0.0008	0.4541	-0.2	776	168.296	-71.109	-0.1929	Stable
84	-260.499	-486.066	-260.502	-486.146	09/07/1985	20/05/2022	411.366	-0.0002	0.0162	-0.0	694	246.804	62.669	0.1700	Stable
85	-260.512	-486.066	-260.506	-486.146	09/07/1985	20/05/2022	705.245	-0.0010	0.1787	-0.3	513	327.839	-95.164	-0.2582	Stable

ANEXO 54 – RESULTADO DA ANÁLISE DSAS (CADA ID REPRESENTA UM TRANSECTO) – PONTO 03

ID	Latitude inicial	Longitude inicial	Latitude final	Longitude final	Data inicial	Data final	Intercepto	Inclinação	r²	LRR	SCE	NSM	EPR	Classe
86	-260.506	-486.069	-260.531	-486.144	09/07/1985	20/05/2022	856.763	-0.0014	0.3510	-0.5198	355.069	-134.728	-0.3655	Eroded
87	-260.527	-486.067	-260.527	-486.147	09/07/1985	20/05/2022	1.072.907	-0.0021	0.6639	-0.7617	430.241	-187.906	-0.5097	Eroded
88	-260.571	-486.112	-260.499	-486.104	01/01/1970	01/01/1970	NaN	NaN	0.0000	0.0000	0.0000	0.0000	0.0000	Stable
89	-260.551	-486.071	-260.535	-486.149	09/07/1985	20/05/2022	2.088.118	-0.0041	0.7440	-14.916	795.187	-386.569	-10.487	Critically Eroded
90	-260.552	-486.066	-260.548	-486.146	09/07/1985	20/05/2022	1.057.779	-0.0022	0.4661	-0.8210	394.130	-379.502	-10.295	Eroded
91	-260.562	-486.067	-260.555	-486.147	09/07/1985	20/05/2022	1.289.248	-0.0027	0.6517	-0.9982	456.322	-456.322	-12.379	Eroded
92	-260.567	-486.068	-260.569	-486.148	09/07/1985	20/05/2022	1.429.254	-0.0028	0.6818	-10.392	543.755	-253.301	-0.6871	Critically Eroded
93	-260.572	-486.068	-260.582	-486.147	09/07/1985	20/05/2022	1.498.260	-0.0031	0.6640	-11.440	518.855	-473.858	-12.854	Critically Eroded
94	-260.591	-486.068	-260.581	-486.147	09/07/1985	20/05/2022	1.506.295	-0.0031	0.8688	-11.249	473.405	-473.405	-12.842	Critically Eroded

178

ç	95	-260.615	-486.076	-260.573	-486.140	09/07/1985	20/05/2022	2.222.439	-0.0046	0.9125	-16.662	690.039	-604.662	-16.403	Critically Eroded
ç	96	-260.606	-486.072	-260.598	-486.151	09/07/1985	20/05/2022	2.332.851	-0.0042	0.8168	-15.191	649.979	-568.173	-15.413	Critically Eroded
ç	97	-260.574	-486.102	-260.644	-486.118	09/07/1985	20/05/2022	10.281.521	-0.0197	0.7657	-72.013	3.069.868	-3.069.868	-83.277	Critically Eroded
ç	98	-260.612	-486.067	-260.621	-486.147	09/07/1985	20/05/2022	1.665.601	-0.0034	0.7059	-12.547	558.092	-470.250	-12.757	Critically Eroded
ç	99	-260.615	-486.067	-260.636	-486.144	09/07/1985	20/05/2022	903.339	-0.0016	0.4574	-0.5936	311.824	-311.824	-0.8459	Eroded
1	100	-260.669	-486.105	-260.597	-486.113	01/01/1970	01/01/1970	NaN	NaN	0.0000	0.0000	0.0000	0.0000	0.0000	Stable
1	101	-260.606	-486.092	-260.674	-486.119	09/07/1985	20/05/2022	3.684.519	-0.0072	0.6260	-26.323	1.321.703	-1.279.478	-34.709	Critically Eroded
-	102	-260.653	-486.068	-260.641	-486.147	09/07/1985	20/05/2022	2.038.069	-0.0038	0.8879	-14.025	580.611	-562.227	-15.252	Critically Eroded
1	103	-260.650	-486.063	-260.658	-486.142	09/07/1985	20/05/2022	1.261.604	-0.0027	0.8130	-0.9673	495.270	-495.270	-13.435	Eroded
1	104	-260.655	-486.060	-260.669	-486.139	09/07/1985	20/05/2022	1.313.654	-0.0028	0.5886	-10.371	502.118	-502.118	-13.621	Critically Eroded
-	105	-260.635	-486.084	-260.704	-486.106	09/07/1985	20/05/2022	1.147.135	-0.0021	0.3155	-0.7668	738.549	-476.814	-12.935	Eroded

ANEXO 55 – RESULTADO DA ANÁLISE DSAS (CADA ID REPRESENTA UM TRANSECTO) – PONTO 04

ID	Latitude inicial	Longitude inicial	Latitude final	Longitude final	Data inicial	Data final	Intercepto	Inclinação	۲²	LRR	SCE	NSM	EPR	Classe
106	-260.643	-486.070	-260.708	-486.107	09/07/1985	20/05/2022	638.515	-0.0003	0.0077	-0.0991	464.871	0.0000	0.0000	Stable
107	-260.668	-486.048	-260.699	-486.120	09/07/1985	20/05/2022	-604.638	0.0026	0.3096	0.9524	780.582	223.153	0.6054	Accreted
108	-260.676	-486.043	-260.706	-486.116	09/07/1985	20/05/2022	-483.351	0.0023	0.2253	0.8254	759.197	57.821	0.1569	Accreted
109	-260.669	-486.046	-260.722	-486.100	09/07/1985	20/05/2022	-518.686	0.0019	0.4009	0.6911	423.173	158.405	0.4297	Accreted
110	-260.675	-486.038	-260.728	-486.092	09/07/1985	20/05/2022	-120.583	0.0011	0.1797	0.4004	409.951	217.598	0.5903	Stable
111	-260.689	-486.026	-260.728	-486.093	09/07/1985	20/05/2022	297.674	-0.0002	0.0138	-0.0639	242.923	-78.194	-0.2121	Stable
112	-260.685	-486.031	-260.745	-486.075	09/07/1985	20/05/2022	373.439	-0.0002	0.0085	-0.0624	334.410	81.363	0.2207	Stable
113	-260.683	-486.046	-260.755	-486.042	09/07/1985	20/05/2022	427.184	-0.0003	0.0707	-0.0943	165.652	-11.972	-0.0325	Stable
114	-260.736	-486.069	-260.699	-486.000	09/07/1985	20/05/2022	41.706	-0.0000	0.0698	-0.0115	19.055	0.0000	0.0000	Stable
115	-260.677	-486.024	-260.746	-486.046	09/07/1985	20/05/2022	189.586	-0.0001	0.0138	-0.0319	112.484	-54.833	-0.1487	Stable
116	-260.691	-485.999	-260.742	-486.056	09/07/1985	20/05/2022	129.891	0.0002	0.2153	0.0756	56.604	37.574	0.1019	Stable

180

ANEXO 56 – RESULTADO DA ANÁLISE DSAS (CADA ID REPRESENTA UM TRANSECTO) – PONTO 05

ID	Latitude inicial	Longitude inicial	Latitude final	Longitude final	Data inicial	Data final	Intercepto	Inclinação	r²	LRR	SCE	NSM	EPR	Classe
118	-260.731	-485.992	-260.728	-486.072	09/07/1985	20/05/2022	-19.611	0.0005	0.0359	0.1833	477.790	85.610	0.2322	Stable
119	-260.740	-485.993	-260.737	-486.073	09/07/1985	20/05/2022	-388.743	0.0015	0.2048	0.5601	371.460	356.094	0.9660	Accreted
120	-260.753	-485.995	-260.742	-486.074	09/07/1985	20/05/2022	0.1581	0.0004	0.0277	0.1623	488.782	0.0000	0.0000	Stable
121	-260.761	-485.996	-260.752	-486.075	09/07/1985	20/05/2022	265.055	0.0001	0.0022	0.0460	560.371	0.0000	0.0000	Stable
122	-260.766	-485.996	-260.766	-486.076	09/07/1985	20/05/2022	-75.091	0.0006	0.0493	0.2262	516.701	-66.401	-0.1801	Stable
123	-260.776	-485.997	-260.773	-486.077	09/07/1985	20/05/2022	258.839	-0.0000	0.0001	-0.0107	438.077	-304.031	-0.8248	Stable
124	-260.785	-485.997	-260.782	-486.077	09/07/1985	20/05/2022	335.964	-0.0001	0.0009	-0.0254	367.545	-223.739	-0.6069	Stable
125	-260.793	-485.997	-260.793	-486.077	09/07/1985	20/05/2022	448.070	-0.0002	0.0107	-0.0848	323.724	-193.956	-0.5261	Stable
126	-260.802	-485.997	-260.802	-486.077	09/07/1985	20/05/2022	389.465	-0.0001	0.0039	-0.0479	361.715	-165.395	-0.4487	Stable
127	-260.813	-485.997	-260.809	-486.077	09/07/1985	20/05/2022	556.221	-0.0006	0.0985	-0.2148	300.033	-233.919	-0.6346	Stable
128	-260.820	-485.997	-260.819	-486.077	09/07/1985	20/05/2022	454.219	-0.0004	0.0646	-0.1573	239.237	-192.036	-0.5209	Stable
129	-260.829	-485.997	-260.828	-486.077	09/07/1985	20/05/2022	394.542	-0.0003	0.0212	-0.0999	265.546	-147.803	-0.4010	Stable
130	-260.840	-485.998	-260.836	-486.078	09/07/1985	20/05/2022	644.083	-0.0009	0.1836	-0.3208	270.177	-270.177	-0.7329	Stable
131	-260.845	-485.997	-260.848	-486.077	09/07/1985	20/05/2022	440.337	-0.0004	0.0463	-0.1352	269.860	-147.920	-0.4013	Stable
132	-260.854	-485.997	-260.857	-486.077	09/07/1985	20/05/2022	354.255	-0.0004	0.0289	-0.1338	269.858	-162.536	-0.4409	Stable
133	-260.863	-485.996	-260.866	-486.076	09/07/1985	20/05/2022	226.022	-0.0001	0.0019	-0.0328	269.829	-147.903	-0.4012	Stable
134	-260.873	-485.996	-260.875	-486.076	09/07/1985	20/05/2022	515.091	-0.0008	0.2247	-0.3097	266.852	-266.852	-0.7239	Stable
135	-260.880	-485.996	-260.886	-486.075	09/07/1985	20/05/2022	269.904	-0.0004	0.0305	-0.1313	293.136	-170.541	-0.4626	Stable
136	-260.893	-485.995	-260.891	-486.075	09/07/1985	20/05/2022	19.767	0.0003	0.0097	0.0924	318.067	-82.493	-0.2238	Stable

137	-260.901	-485.996	-260.901	-486.076	09/07/1985	20/05/2022	413.241	-0.0002	0.0547	-0.0670	139.202	-51.182	-0.1388	Stable
138	-260.907	-485.995	-260.913	-486.075	09/07/1985	20/05/2022	682.844	-0.0010	0.2833	-0.3707	311.464	-27.135	-0.0736	Stable
139	-260.918	-485.995	-260.920	-486.075	09/07/1985	20/05/2022	622.320	-0.0007	0.1797	-0.2572	295.478	-32.912	-0.0893	Stable
140	-260.927	-485.995	-260.929	-486.075	09/07/1985	20/05/2022	693.810	-0.0008	0.3438	-0.3082	249.658	-49.170	-0.1334	Stable
141	-260.938	-485.995	-260.936	-486.075	09/07/1985	20/05/2022	868.967	-0.0012	0.3408	-0.4509	301.797	-77.304	-0.2097	Stable
142	-260.944	-485.994	-260.948	-486.074	09/07/1985	20/05/2022	772.316	-0.0011	0.2915	-0.4151	338.253	-91.878	-0.2492	Stable
143	-260.952	-485.993	-260.957	-486.073	09/07/1985	20/05/2022	507.532	-0.0005	0.0970	-0.1832	230.730	63.095	0.1712	Stable
144	-260.963	-485.992	-260.965	-486.073	09/07/1985	20/05/2022	617.545	-0.0009	0.3858	-0.3110	185.892	-106.221	-0.2881	Stable
145	-260.972	-485.992	-260.974	-486.072	09/07/1985	20/05/2022	750.849	-0.0011	0.6823	-0.4164	183.576	-106.652	-0.2893	Stable

ANEXO 57 – RESULTADO DA ANÁLISE DSAS (CADA ID REPRESENTA UM TRANSECTO) – PONTO 06

ID	Latitude inicial	Longitude inicial	Latitude final	Longitude final	Data inicial	Data final	Intercepto	Inclinação	r²	LRR	SCE	NSM	EPR	Classe
146	-260.972	-485.993	-260.991	-486.070	09/07/1985	20/05/2022	873.749	-0.0015	0.6645	-0.5655	260.107	-231.167	-0.6271	Eroded
147	-260.989	-485.990	-260.993	-486.070	09/07/1985	20/05/2022	978.312	-0.0020	0.5853	-0.7373	360.829	-218.255	-0.5921	Eroded
148	-260.995	-485.990	-261.004	-486.069	09/07/1985	20/05/2022	913.137	-0.0018	0.4967	-0.6428	323.307	-197.391	-0.5355	Eroded
149	-261.005	-485.988	-261.012	-486.068	09/07/1985	20/05/2022	821.567	-0.0016	0.3488	-0.5665	334.005	-185.482	-0.5032	Eroded
150	-261.004	-485.989	-261.031	-486.064	09/07/1985	20/05/2022	875.621	-0.0018	0.5655	-0.6649	304.350	-228.561	-0.6200	Eroded
151	-261.021	-485.986	-261.032	-486.065	09/07/1985	20/05/2022	876.283	-0.0017	0.7445	-0.6336	274.338	-274.338	-0.7442	Eroded
152	-261.070	-486.023	-260.998	-486.028	29/05/2005	12/05/2022	-465.621	0.0027	0.4566	0.9946	271.686	271.686	16.026	Accreted
153	-261.037	-485.986	-261.044	-486.066	09/07/1985	20/05/2022	1.144.285	-0.0020	0.9027	-0.7374	277.009	-266.872	-0.7240	Eroded
154	-261.045	-485.986	-261.053	-486.066	09/07/1985	20/05/2022	1.359.536	-0.0024	0.8089	-0.8668	427.692	-301.430	-0.8177	Eroded
155	-261.057	-485.984	-261.057	-486.064	09/07/1985	20/05/2022	1.351.372	-0.0028	0.9462	-10.109	449.424	-354.068	-0.9605	Critically Eroded
156	-261.060	-485.983	-261.072	-486.062	09/07/1985	20/05/2022	1.157.648	-0.0023	0.8458	-0.8410	362.396	-233.961	-0.6347	Eroded
157	-261.065	-485.984	-261.082	-486.062	09/07/1985	20/05/2022	1.314.132	-0.0023	0.8829	-0.8533	318.047	-295.565	-0.8018	Eroded
158	-261.103	-485.993	-261.052	-486.050	09/07/1985	20/05/2022	1.846.220	-0.0037	0.7946	-13.635	727.184	-623.445	-16.912	Critically Eroded

1	82
---	----

159	-261.079	-485.978	-261.089	-486.058	09/07/1985	20/05/2022	150.116	-0.0002	0.0061	-0.0557	276.896	-178.797	-0.4850	Stable
160	-261.082	-485.979	-261.103	-486.056	09/07/1985	20/05/2022	410.884	-0.0006	0.2020	-0.2280	240.728	-68.272	-0.1852	Stable
161	-261.080	-485.981	-261.117	-486.050	09/07/1985	20/05/2022	117.024	0.0001	0.0100	0.0401	148.399	68.994	0.1872	Stable
162	-261.103	-485.976	-261.112	-486.055	09/07/1985	20/05/2022	990.668	-0.0021	0.8579	-0.7753	300.245	-296.806	-0.8052	Eroded
163	-261.102	-485.981	-261.125	-486.057	09/07/1985	20/05/2022	1.527.425	-0.0024	0.8087	-0.8674	382.492	-302.849	-0.8215	Eroded
164	-261.123	-485.976	-261.115	-486.055	09/07/1985	20/05/2022	1.222.757	-0.0023	0.8331	-0.8432	373.766	-204.050	-0.5535	Eroded
165	-261.110	-485.980	-261.145	-486.050	09/07/1985	20/05/2022	1.388.087	-0.0025	0.8919	-0.9224	369.226	-325.962	-0.8842	Eroded
166	-261.112	-485.983	-261.161	-486.042	09/07/1985	20/05/2022	1.277.351	-0.0024	0.8787	-0.8799	346.278	-300.224	-0.8144	Eroded
167	-261.172	-485.988	-261.115	-486.036	09/07/1985	20/05/2022	2.232.684	-0.0043	0.7941	-15.708	774.434	-425.751	-11.549	Critically Eroded
168	-261.119	-485.993	-261.184	-486.028	09/07/1985	20/05/2022	2.035.705	-0.0040	0.8132	-14.779	696.858	-406.632	-11.031	Critically Eroded
169	-261.156	-485.967	-261.162	-486.047	09/07/1985	20/05/2022	263.815	-0.0005	0.2192	-0.1656	145.296	-81.558	-0.2212	Stable
170	-261.166	-485.968	-261.168	-486.048	09/07/1985	20/05/2022	836.343	-0.0016	0.6477	-0.5679	313.422	-155.946	-0.4230	Eroded
171	-261.173	-485.966	-261.178	-486.046	09/07/1985	20/05/2022	904.044	-0.0018	0.6640	-0.6394	309.435	-163.537	-0.4436	Eroded
172	-261.178	-485.965	-261.191	-486.044	09/07/1985	20/05/2022	1.084.055	-0.0020	0.6564	-0.7170	358.246	-219.483	-0.5954	Eroded
173	-261.190	-485.965	-261.197	-486.044	09/07/1985	20/05/2022	876.831	-0.0012	0.5678	-0.4498	252.928	-105.597	-0.2865	Stable
174	-261.193	-485.963	-261.211	-486.041	09/07/1985	20/05/2022	771.663	-0.0013	0.6281	-0.4770	296.197	-228.892	-0.6209	Stable
175	-261.204	-485.960	-261.217	-486.039	09/07/1985	20/05/2022	685.562	-0.0013	0.5613	-0.4571	329.396	-210.515	-0.5711	Stable
176	-261.211	-485.959	-261.228	-486.037	09/07/1985	20/05/2022	721.936	-0.0014	0.5721	-0.5258	317.912	-215.385	-0.5843	Eroded
177	-261.223	-485.957	-261.234	-486.036	09/07/1985	20/05/2022	752.830	-0.0013	0.5873	-0.4878	291.981	-220.028	-0.5969	Stable
178	-261.214	-485.964	-261.260	-486.026	09/07/1985	20/05/2022	1.006.302	-0.0019	0.5709	-0.7002	366.618	-322.929	-0.8760	Eroded
179	-261.242	-485.953	-261.249	-486.032	09/07/1985	20/05/2022	995.756	-0.0019	0.5246	-0.7038	443.753	-293.302	-0.7956	Eroded
180	-261.249	-485.952	-261.260	-486.031	09/07/1985	20/05/2022	1.551.176	-0.0029	0.6249	-10.628	561.188	-419.885	-11.390	Critically Eroded
181	-261.256	-485.950	-261.271	-486.028	09/07/1985	20/05/2022	1.394.145	-0.0025	0.6604	-0.9009	440.260	-368.743	-10.003	Eroded
182	-261.265	-485.948	-261.279	-486.027	09/07/1985	20/05/2022	1.343.131	-0.0024	0.5687	-0.8795	444.742	-323.964	-0.8788	Eroded
183	-261.274	-485.946	-261.288	-486.025	09/07/1985	20/05/2022	1.188.397	-0.0021	0.6061	-0.7657	400.601	-230.723	-0.6259	Eroded
184	-261.301	-485.946	-261.279	-486.022	09/07/1985	20/05/2022	1.528.684	-0.0027	0.5741	-0.9997	508.873	-238.652	-0.6474	Eroded
185	-261.289	-485.943	-261.309	-486.020	09/07/1985	20/05/2022	1.029.460	-0.0020	0.6173	-0.7124	418.931	-146.303	-0.3969	Eroded

186	-261.309	-485.940	-261.306	-486.020	09/07/1985	20/05/2022	1.348.812	-0.0028	0.7010	-10.250	436.009	-382.284	-10.370	Critically Eroded
187	-261.302	-485.942	-261.331	-486.015	09/07/1985	20/05/2022	1.358.550	-0.0025	0.4934	-0.9220	466.884	-373.390	-10.129	Eroded

ANEXO 58 – RESULTADO DA ANÁLISE DSAS (CADA ID REPRESENTA UM TRANSECTO) – PONTO 07

ID	Latitude inicial	Longitude inicial	Latitude final	Longitude final	Data inicial	Data final	Intercepto	Inclinação	r²	LRR	SCE	NSM	EPR	Classe
188	-261.308	-485.938	-261.340	-486.009	09/07/1985	20/05/2022	307.836	-0.0003	0.0135	-0.1130	352.448	13.662	0.0371	Stable
189	-261.323	-485.930	-261.341	-486.008	09/07/1985	20/05/2022	231.299	-0.0002	0.0227	-0.0632	214.270	-37.454	-0.1016	Stable
190	-261.332	-485.927	-261.349	-486.005	09/07/1985	20/05/2022	838.887	-0.0016	0.4501	-0.5804	325.856	-161.869	-0.4391	Eroded
191	-261.339	-485.925	-261.360	-486.002	09/07/1985	20/05/2022	258.453	-0.0003	0.0313	-0.1041	241.019	-124.314	-0.3372	Stable
192	-261.355	-485.921	-261.362	-486.001	09/07/1985	20/05/2022	356.869	-0.0005	0.0839	-0.1928	321.549	32.084	0.0870	Stable
193	-261.356	-485.921	-261.378	-485.997	09/07/1985	20/05/2022	950.556	-0.0018	0.4434	-0.6445	378.068	-234.413	-0.6359	Eroded
194	-261.366	-485.917	-261.385	-485.995	09/07/1985	20/05/2022	1.185.300	-0.0022	0.8122	-0.7998	327.235	-274.711	-0.7452	Eroded
195	-261.375	-485.915	-261.394	-485.992	09/07/1985	20/05/2022	1.334.278	-0.0026	0.8140	-0.9530	385.797	-371.152	-10.068	Eroded
196	-261.383	-485.912	-261.403	-485.989	09/07/1985	20/05/2022	1.270.600	-0.0025	0.8473	-0.9169	332.843	-332.843	-0.9029	Eroded
197	-261.391	-485.909	-261.412	-485.986	09/07/1985	20/05/2022	1.266.749	-0.0026	0.8380	-0.9327	366.552	-327.331	-0.8880	Eroded
198	-261.390	-485.908	-261.425	-485.978	09/07/1985	20/05/2022	542.721	-0.0012	0.3608	-0.4214	269.456	-210.296	-0.5705	Stable
199	-261.379	-485.955	-261.447	-485.929	12/05/2022	20/05/2022	259.443.823	-0.5802	0.0000	-2.117.641	46.412	-46.412	- 2.119.048	Critically Eroded
200	-261.409	-485.900	-261.431	-485.976	09/07/1985	20/05/2022	617.734	-0.0011	0.3866	-0.4053	279.372	-188.688	-0.5119	Stable
201	-261.413	-485.899	-261.444	-485.971	09/07/1985	20/05/2022	846.361	-0.0015	0.6993	-0.5561	301.949	-181.450	-0.4922	Eroded
202	-261.461	-485.907	-261.410	-485.964	09/07/1985	20/05/2022	3.220.841	-0.0059	0.7947	-21.450	1.102.988	-848.050	-23.005	Critically Eroded
203	-261.431	-485.894	-261.455	-485.969	09/07/1985	20/05/2022	1.333.191	-0.0026	0.8089	-0.9645	444.626	-365.572	-0.9917	Eroded
204	-261.439	-485.890	-261.464	-485.966	09/07/1985	20/05/2022	1.755.041	-0.0037	0.8855	-13.564	674.252	-614.474	-16.669	Critically Eroded

205	-261.448	-485.887	-261.472	-485.962	09/07/1985	20/05/2022	2.423.091	-0.0054	0.9494	-19.602	844.432	-830.962	-22.542	Critically Eroded
206	-261.456	-485.883	-261.481	-485.959	09/07/1985	20/05/2022	1.967.058	-0.0040	0.9265	-14.458	622.917	-547.343	-14.848	Critically Eroded
207	-261.467	-485.879	-261.487	-485.956	09/07/1985	20/05/2022	2.159.002	-0.0045	0.9046	-16.401	667.208	-666.430	-18.078	Critically Eroded
208	-261.475	-485.876	-261.496	-485.953	09/07/1985	20/05/2022	1.907.053	-0.0037	0.8224	-13.591	605.196	-505.226	-13.705	Critically Eroded
209	-261.485	-485.871	-261.500	-485.949	09/07/1985	20/05/2022	1.476.785	-0.0032	0.7583	-11.703	583.955	-505.023	-13.700	Critically Eroded
210	-261.485	-485.871	-261.517	-485.943	09/07/1985	20/05/2022	1.647.871	-0.0038	0.5406	-13.751	759.789	-700.752	-19.010	Critically Eroded
211	-261.488	-485.872	-261.532	-485.936	09/07/1985	20/05/2022	2.311.751	-0.0050	0.7393	-18.148	918.245	-733.657	-19.902	Critically Eroded
212	-261.510	-485.861	-261.524	-485.940	09/07/1985	20/05/2022	1.868.885	-0.0042	0.8165	-15.338	705.705	-687.645	-18.654	Critically Eroded
213	-261.559	-485.896	-261.488	-485.907	16/04/1995	20/05/2022	2.662.176	-0.0048	0.3402	-17.384	939.379	-142.315	-0.5253	Critically Eroded
214	-261.519	-485.861	-261.542	-485.937	09/07/1985	20/05/2022	2.505.624	-0.0053	0.8386	-19.261	870.118	-837.665	-22.724	Critically Eroded
215	-261.527	-485.858	-261.551	-485.934	09/07/1985	20/05/2022	2.658.721	-0.0058	0.8491	-20.996	939.654	-912.517	-24.754	Critically Eroded
216	-261.535	-485.855	-261.561	-485.930	09/07/1985	20/05/2022	2.919.723	-0.0064	0.8610	-23.486	1.034.274	-1.034.274	-28.057	Critically Eroded
217	-261.543	-485.851	-261.569	-485.926	09/07/1985	20/05/2022	3.439.129	-0.0074	0.9514	-27.104	1.191.171	-1.191.171	-32.313	Critically Eroded
218	-261.551	-485.848	-261.578	-485.922	09/07/1985	20/05/2022	3.063.917	-0.0062	0.8495	-22.601	1.118.420	-1.006.386	-27.301	Critically Eroded
219	-261.556	-485.844	-261.586	-485.917	09/07/1985	20/05/2022	2.718.956	-0.0057	0.8255	-20.973	1.003.619	-887.822	-24.084	Critically Eroded
220	-261.564	-485.839	-261.594	-485.912	09/07/1985	20/05/2022	2.627.682	-0.0055	0.8525	-19.914	856.774	-856.774	-23.242	Critically Eroded
221	-261.566	-485.837	-261.607	-485.904	09/07/1985	20/05/2022	3.130.145	-0.0068	0.8918	-24.924	991.506	-991.506	-26.897	Critically Eroded
222	-261.574	-485.832	-261.614	-485.898	09/07/1985	20/05/2022	2.930.866	-0.0063	0.7748	-22.908	998.837	-998.837	-27.096	Critically Eroded
223	-261.585	-485.824	-261.618	-485.896	09/07/1985	20/05/2022	2.281.832	-0.0049	0.6502	-18.006	900.219	-900.219	-24.421	Critically Eroded
224	-261.587	-485.824	-261.633	-485.886	09/07/1985	20/05/2022	1.927.637	-0.0041	0.7319	-14.902	675.589	-675.589	-18.327	Critically Eroded

ANEXO 59 – RESULTADO DA ANÁLISE DSAS (CADA ID REPRESENTA UM TRANSECTO) – PONTO 08

ID	Latitude inicial	Longitude inicial	Latitude final	Longitude final	Data inicial	Data final	Intercepto	Inclinação	۲²	LRR	SCE	NSM	EPR	Classe
225	-261.594	-485.818	-261.640	-485.879	09/07/1985	20/05/2022	953.822	-0.0020	0.6625	-0.7296	304.633	-280.670	-0.7614	Eroded
226	-261.607	-485.808	-261.642	-485.879	09/07/1985	20/05/2022	725.461	-0.0013	0.4171	-0.4787	344.845	-134.931	-0.3660	Stable
227	-261.623	-485.802	-261.643	-485.879	09/07/1985	20/05/2022	243.478	-0.0002	0.0056	-0.0581	361.636	98.816	0.2681	Stable
228	-261.641	-485.798	-261.642	-485.878	09/07/1985	20/05/2022	530.490	-0.0008	0.1332	-0.2940	368.004	97.756	0.2652	Stable
229	-261.650	-485.798	-261.652	-485.878	09/07/1985	20/05/2022	1.334.926	-0.0028	0.3936	-10.150	552.263	-226.920	-0.6156	Critically Eroded
230	-261.658	-485.799	-261.658	-485.879	09/07/1985	20/05/2022	1.873.948	-0.0038	0.6273	-13.892	580.142	-305.885	-0.8298	Critically Eroded
231	-261.660	-485.800	-261.670	-485.879	09/07/1985	20/05/2022	2.378.597	-0.0051	0.8556	-18.496	685.605	-477.249	-12.946	Critically Eroded
232	-261.678	-485.804	-261.661	-485.882	09/07/1985	20/05/2022	3.838.598	-0.0079	0.8744	-28.967	1.386.977	-1.109.344	-30.093	Critically Eroded
233	-261.677	-485.799	-261.676	-485.879	09/07/1985	20/05/2022	3.058.365	-0.0068	0.8959	-24.674	1.118.771	-1.066.159	-28.922	Critically Eroded
234	-261.683	-485.799	-261.687	-485.880	09/07/1985	20/05/2022	3.528.046	-0.0079	0.8835	-28.705	1.230.344	-1.079.334	-29.279	Critically Eroded
235	-261.692	-485.799	-261.696	-485.879	09/07/1985	20/05/2022	3.668.463	-0.0084	0.8802	-30.597	1.210.211	-1.083.266	-29.386	Critically Eroded
236	-261.706	-485.800	-261.696	-485.880	09/07/1985	20/05/2022	3.491.008	-0.0078	0.8540	-28.613	1.151.343	-1.137.254	-30.851	Critically Eroded
237	-261.713	-485.797	-261.703	-485.877	09/07/1985	20/05/2022	2.499.476	-0.0058	0.8049	-21.111	891.468	-887.450	-24.074	Critically Eroded
238	-261.711	-485.801	-261.717	-485.881	09/07/1985	20/05/2022	2.548.669	-0.0054	0.6293	-19.638	913.040	-862.606	-23.400	Critically Eroded
239	-261.739	-485.806	-261.703	-485.876	09/07/1985	20/05/2022	1.472.402	-0.0034	0.5692	-12.391	591.073	-531.513	-14.419	Critically Eroded
240	-261.747	-485.812	-261.711	-485.881	09/07/1985	20/05/2022	978.608	-0.0021	0.6748	-0.7827	434.281	-325.452	-0.8829	Eroded
241	-261.756	-485.825	-261.706	-485.883	09/07/1985	20/05/2022	2.012.799	-0.0039	0.7482	-14.249	776.028	-375.401	-10.184	Critically Eroded

ANEXO 60 – RESULTADO DA ANÁLISE DSAS (CADA ID REPRESENTA UM TRANSECTO) – PONTO 09

ID	Latitude inicial	Longitude inicial	Latitude final	Longitude final	Data inicial	Data final	Intercepto	Inclinação	r²	LRR	SCE	NSM	EPR	Classe
242	-261.758	-485.826	-261.719	-485.894	09/07/1985	20/05/2022	908.299	-0.0013	0.3370	-0.4842	405.377	-74.399	-0.2018	Stable
243	-261.778	-485.879	-261.711	-485.850	09/07/1985	20/05/2022	338.984	-0.0002	0.0043	-0.0559	338.809	-107.286	-0.2910	Stable
244	-261.776	-485.844	-261.725	-485.900	09/07/1985	20/05/2022	16.545	0.0001	0.0637	0.0347	52.243	20.003	0.0543	Stable
245	-261.779	-485.851	-261.729	-485.909	09/07/1985	20/05/2022	472.977	-0.0007	0.1364	-0.2587	289.130	-37.260	-0.1011	Stable
246	-261.786	-485.858	-261.736	-485.916	09/07/1985	20/05/2022	262.472	-0.0003	0.0396	-0.1238	269.608	-14.530	-0.0394	Stable
247	-261.794	-485.868	-261.740	-485.921	09/07/1985	20/05/2022	-59.069	0.0005	0.0799	0.1816	273.941	0.4255	0.0115	Stable
248	-261.802	-485.881	-261.742	-485.925	09/07/1985	20/05/2022	-108.667	0.0004	0.2195	0.1529	119.849	0.0000	0.0000	Stable
249	-261.808	-485.892	-261.745	-485.931	09/07/1985	20/05/2022	117.964	-0.0002	0.0655	-0.0630	92.282	31.414	0.0852	Stable
250	-261.812	-485.901	-261.749	-485.939	09/07/1985	20/05/2022	-174.523	0.0006	0.2821	0.2360	160.135	160.135	0.4344	Stable
251	-261.817	-485.910	-261.754	-485.948	09/07/1985	20/05/2022	102.586	-0.0001	0.0045	-0.0337	189.519	-78.816	-0.2138	Stable
252	-261.824	-485.926	-261.755	-485.949	09/07/1985	20/05/2022	297.163	-0.0005	0.2234	-0.1952	159.872	-159.872	-0.4337	Stable
253	-261.826	-485.936	-261.757	-485.959	09/07/1985	20/05/2022	115.304	-0.0002	0.0179	-0.0554	127.289	-127.289	-0.3453	Stable
254	-261.827	-485.943	-261.760	-485.971	09/07/1985	20/05/2022	378.926	-0.0004	0.3895	-0.1567	112.002	0.0000	0.0000	Stable
255	-261.830	-485.952	-261.763	-485.981	09/07/1985	20/05/2022	308.211	-0.0003	0.0985	-0.1104	143.579	53.706	0.1457	Stable
256	-261.833	-485.962	-261.766	-485.990	09/07/1985	20/05/2022	223.867	-0.0000	0.0014	-0.0121	115.267	27.113	0.0736	Stable
257	-261.835	-485.967	-261.771	-486.004	09/07/1985	20/05/2022	49.944	0.0003	0.0259	0.0923	293.310	67.481	0.1831	Stable
258	-261.839	-485.975	-261.775	-486.012	09/07/1985	20/05/2022	-181.588	0.0008	0.1989	0.2879	281.378	138.222	0.3750	Stable
259	-261.845	-485.991	-261.777	-486.015	09/07/1985	20/05/2022	113.418	-0.0000	0.0012	-0.0114	135.725	38.494	0.1044	Stable
260	-261.845	-485.995	-261.780	-486.031	09/07/1985	20/05/2022	-271.291	0.0014	0.2237	0.5208	503.735	0.0000	0.0000	Stable
261	-261.848	-486.004	-261.784	-486.040	09/07/1985	20/05/2022	-4.221.027	0.0128	0.4118	46.798	2.825.853	0.0000	0.0000	Stable
262	-261.851	-486.010	-261.790	-486.052	09/07/1985	20/05/2022	-18.990	0.0004	0.0834	0.1415	191.963	81.520	0.2211	Stable
263	-261.856	-486.017	-261.796	-486.061	09/07/1985	20/05/2022	-92.803	0.0005	0.2110	0.1651	97.879	95.203	0.2583	Stable
264	-261.866	-486.038	-261.795	-486.056	09/07/1985	20/05/2022	291.032	-0.0005	0.0972	-0.1749	157.259	-157.259	-0.4266	Stable
265	-261.859	-486.028	-261.808	-486.084	09/07/1985	20/05/2022	-0.3265	0.0002	0.0273	0.0710	136.475	-15.052	-0.0408	Stable

266	-261.871	-486.049	-261.805	-486.081	09/07/1985	20/05/2022	415.272	-0.0007	0.2293	-0.2423	143.206	-129.045	-0.3501	Stable
267	-261.874	-486.059	-261.808	-486.090	09/07/1985	20/05/2022	520.266	-0.0010	0.4150	-0.3496	225.969	-123.153	-0.3341	Stable
268	-261.878	-486.071	-261.810	-486.096	09/07/1985	20/05/2022	44.632	-0.0000	0.0028	-0.0084	38.497	-38.497	-0.1044	Stable
269	-261.883	-486.083	-261.813	-486.102	09/07/1985	20/05/2022	117.541	-0.0003	0.1507	-0.0994	90.407	-82.463	-0.2237	Stable
270	-261.885	-486.105	-261.813	-486.100	09/07/1985	20/05/2022	485.126	-0.0008	0.5637	-0.2914	135.173	-135.173	-0.3667	Stable
271	-261.884	-486.115	-261.813	-486.110	09/07/1985	20/05/2022	421.658	-0.0005	0.6504	-0.1882	90.267	-55.755	-0.1512	Stable
272	-261.883	-486.132	-261.813	-486.113	09/07/1985	20/05/2022	352.790	-0.0006	0.4173	-0.2341	133.858	-38.140	-0.1035	Stable
273	-261.881	-486.141	-261.811	-486.123	09/07/1985	20/05/2022	147.856	-0.0001	0.0050	-0.0324	188.869	74.027	0.2008	Stable
274	-261.878	-486.150	-261.808	-486.133	09/07/1985	20/05/2022	-0.7203	0.0004	0.0831	0.1580	203.711	135.408	0.3673	Stable
275	-261.876	-486.161	-261.806	-486.141	09/07/1985	20/05/2022	125.524	0.0001	0.0063	0.0391	160.241	83.262	0.2259	Stable
276	-261.875	-486.165	-261.804	-486.156	09/07/1985	20/05/2022	165.530	0.0001	0.0010	0.0283	263.722	130.119	0.3530	Stable
277	-261.874	-486.175	-261.803	-486.166	09/07/1985	20/05/2022	228.784	0.0000	0.0000	0.0008	313.213	86.119	0.2336	Stable
278	-261.874	-486.181	-261.803	-486.181	09/07/1985	20/05/2022	546.953	-0.0009	0.1035	-0.3432	298.584	15.359	0.0417	Stable
279	-261.875	-486.189	-261.803	-486.192	09/07/1985	20/05/2022	360.073	-0.0005	0.0279	-0.1727	298.737	49.015	0.1330	Stable
280	-261.875	-486.199	-261.803	-486.202	09/07/1985	20/05/2022	299.813	-0.0004	0.0207	-0.1379	298.733	134.979	0.3662	Stable
281	-261.875	-486.210	-261.803	-486.212	09/07/1985	20/05/2022	295.594	-0.0004	0.0268	-0.1589	301.248	106.698	0.2894	Stable
282	-261.875	-486.219	-261.804	-486.222	09/07/1985	20/05/2022	558.085	-0.0012	0.1567	-0.4305	304.872	44.487	0.1207	Stable
283	-261.876	-486.232	-261.804	-486.229	09/07/1985	20/05/2022	520.801	-0.0011	0.1293	-0.3965	340.286	15.002	0.0407	Stable
284	-261.862	-486.265	-261.807	-486.213	09/07/1985	20/05/2022	-327.242	0.0014	0.4353	0.5040	245.872	89.000	0.2414	Stable

DECRETAÇÃO DE DESASTRES PELA DEFESA CÍVIL MÚNICIPIOS (ARAQUARI/ BARRA DO SUL/ BARRA VELHA/ GARUVA/ ITAPOÁ/ JOINVILLE/ SÃO FRANCISCO DO SUL) 2020 Balneário Barra do Sul 1 09/02/2020 **Chuvas Intensas** SE 2 2020 Itapoá 08/02/2020 **Chuvas Intensas** SE 3 2020 São Francisco do Sul 07/02/2020 **Chuvas Intensas** SE 4 2019 Joinville 27/03/2019 **Chuvas Intensas** SE 2019 5 Araquari 17/02/2019 **Chuvas Intensas** SE 6 2019 Balneário Barra do Sul SE 17/02/2019 **Chuvas Intensas** 7 2019 **Barra Velha** 17/02/2019 Alagamentos SE Joinville 8 2019 27/03/2019 **Chuvas Intensas** SE 9 2018 Itapoá 18/09/2018 **Erosão Costeira** SE 10 2018 Joinville 29/01/2018 **Chuvas Intensas** SE 11 2017 Balneário Barra do Sul **Erosão Costeira** 25/03/2017 SE 12 2017 Barra Velha 29/05/2017 Ressacas SE **Barra Velha** 13 2017 Erosão Costeira 25/09/2017 SE 14 2017 Joinville 02/02/2017 **Chuvas Intensas** SE 15 2017 São Francisco do Sul 10/10/2017 Erosão Costeira SE 2016 Balneário Barra do Sul 16 31/10/2016 SE Ressacas 2016 17 Garuva 23/02/2016 SE **Chuvas Intensas** 18 2015 Balneário Barra do Sul 27/07/2015 **Erosão Costeira** SE 19 2015 Balneário Barra do Sul 28/12/2015 Inundação SE 20 2014 Araguari 10/03/2014 Enxurrada SE 21 2014 Araquari PSE Enxurrada 08/06/2014 22 2014 Araquari 13/06/2014 Enxurrada SE 23 2014 Balneário Barra do Sul 17/02/2014 Erosão Cost SE 24 2014 Balneário Barra do Sul 18/05/2014 **Erosão Costeira** PSE 25 2014 Balneário Barra do Sul 13/06/2014 Enxurrada SE 26 2014 São Francisco do Sul 14/02/2014 **Erosão Costeira** SE 27 2014 São Francisco do Sul 15/05/2014 **Erosão Costeira** PSE 28 2013 Araquari Alagamentos SE 15/05/2013 29 2013 Araquari Enxurrada 22/12/2013 SE 2013 Balneário Barra do Sul 30 28/05/2013 Enxurrada SE Balneário Barra do Sul 31 2013 13/06/2013 Erosão SE 2013 Barra Velha 32 09/07/2013 Enxurrada SE 33 2013 **Barra Velha** 07/10/2013 Enxurrada PSE 2013 Itapoá 34 29/11/2013 Erosão SE São Francisco do Sul 35 2013 24/12/2013 Lib. Quimica SE 36 2011 Araquari 13/06/2011 Enxurrada SE 37 2011 Araguari Enxurrada PSE 19/07/2011 38 2011 Araquari 11/09/2011 Enxurrada PSE 39 2011 Araguari 08/12/2011 Enxurrada SE

ANEXO 61 - Resultado dos Desastres ocorridos no período de 1998 a 2020.

40	2011	Araquari	22/02/2012	Enxurrada	PSE
41	2011	Balneário Barra do Sul	24/04/2011	Enxurrada	SE
42	2011	Balneário Barra do Sul	19/07/2011	Enxurrada	PSE
43	2011	Balneário Barra do Sul	08/12/2011	Enxurrada	SE
44	2011	Balneário Barra do Sul	04/03/2012	Enxurrada	PSE
45	2011	Balneário Barra do Sul	12/03/2012	Granizo	SE
46	2011	Barra Velha	21/04/2011	Enxurrada	SE
47	2011	Barra Velha	19/07/2011	Enxurrada	PSE
48	2011	Barra Velha	28/08/2011	Ressaca	SE
49	2011	Itapoá	21/01/2011	Enxurrada	SE
50	2011	Itapoá	20/04 e 19/07/2011*	Enxurrada	PSE
51	2011	Joinville	21/04/2011	Enxurrada	SE
52	2011	Joinville	14/06/2011	Enxurrada	SE
53	2011	Joinville	18/07/2011	Enxurrada	PSE
54	2011	Joinville	12/09/2011	Enxurrada	PSE
55	2011	São Francisco do Sul	21/04/2011	Enxurrada	SE
56	2011	São Francisco do Sul	19/07/2011	Enxurrada	PSE
57	2010	Araquari	14/04/2010	Enxurrada	SE
58	2010	Araquari	13/07/2010	Enxurrada	PSE
59	2010	Araquari	16/08/2010	Enxurrada	SE
60	2010	Araquari	14/11/2010	Enxurrada	PSE
61	2010	Balneário Barra do Sul	25/07/2010	Enxurrada	SE
62	2010	Balneário Barra do Sul	30/08/2010	Ressaca	SE
63	2010	Balneário Barra do Sul	21/10/2010	Enxurrada	PSE
64	2011	Balneário Barra do Sul	23/02/2011	Ressaca	SE
65	2010	Barra Velha	26/07/2010	Enxurrada	SE
66	2010	Barra Velha	12/08/2010	Ressaca	SE
67	2010	Barra Velha	24/10/2010	Enxurrada	PSE
68	2010	Barra Velha	10/11/2010	Enxurrada	PSE
69	2010	Garuva	14/11/2010	Vendaval	SE
70	2010	Itapoá	23/01/2010	Enxurrada	SE
71	2010	Itapoá	23/04 e 22/07/2010*	Enxurrada	PSE
72	2010	Joinville	28/04/2010	Enxurrada	SE
73	2010	Joinville	11/05/2010	Vendaval	SE
74	2010	Joinville	26/07/2010	Enxurrada	PSE
75	2010	São Francisco do Sul	02/05/2010	Enxurrada	SE
76	2010	São Francisco do Sul	22/07/2010	Enxurrada	PSE
77	2009	Araquari	20/05/2009	Enxurrada	PSE
78	2009	Araquari	07/12/2009	Vendaval	SE
79	2009	Balneário Barra do Sul	05/05/2009	Enxurrada	SE
80	2009	Balneário Barra do Sul	01/06/2009	Enxurrada	PSE
81	2009	Balneário Barra do Sul	18/10/2009	Enxurrada	SE
82	2009	Balneário Barra do Sul	11/01/2010	Enxurrada	PSE
83	2009	Barra Velha	13/04/2009	Enxurrada	SE
84	2009	Barra Velha	28/05/2009	Enxurrada	PSE

85	2009	Barra Velha	07/12/2009	Vendaval	SE
86	2009	Garuva	21/05/2009	Enxurrada	PSE
87	2009	Itapoá	26/02/2009	Enxurrada	PSE
88	2009	Itapoá	15/06/2009	Enxurrada	SE
89	2009	Joinville	13/05/2009	Enxurrada	PSE
90	2009	São Francisco do Sul	20/04/2009	Enxurrada	SE
91	2009	São Francisco do Sul	03/06/2009	Enxurrada	PSE
92	2009	São Francisco do Sul	19/07/2009	Enxurrada	PSE
93	2008	Araquari	23/11/2008	Enxurrada	SE
94	2008	Balneário Barra do Sul	23/11/2008	Enxurrada	SE
95	2008	Barra velha	23/11/2008	Enxurrada	SE
96	2008	Garuva	24/11/2008	Enxurrada	SE
97	2008	Itapoá	31/01/2008	Enxurrada	SE
98	2008	Itapoá	26/11/2008	Enxurrada	ECP
99	2008	Joinville	03/03/2008	Enxurrada	SE
100	2008	Joinville	28/11/2008	Enxurrada	SE
101	2008	São Francisco do Sul	01/02/2008	Enxurrada	SE
102	2008	São Francisco do Sul	21/11/2008	Enxurrada	SE
103	2007	Garuva	26/02/2007	Enxurrada	SE
104	2007	Garuva	24/05/2007	Enxurrada	PSE
105	2007	Joinville	23/02/2007	Enxurrada	SE
106	2007	Joinville	17/05/2007	Enxurrada	PSE
107	2006	Araquari	02/10/2006	Alagamentos	SE
108	2006	Joinville	17/03/2006	Vendaval	SE
109	2005	Joinville	08/12/2006	Enchentes	SE
110	2005	Barra Velha	10/08/2005	Ciclone	SE
111	2005	Garuva	10/08/2005	Ciclone	SE
112	2005	Joinville	26/07/2005	Granizo	SE
113	2004	Araquari	29/03/2004	Erosão Laminar	SE
114	2004	Garuva	27/02/2004	Granizo	SE
115	2004	Garuva	26/05/2004	Vendaval ou Tempestades	SE
116	2004	Joinville	03/03/2004	Granizo	SE
117	2003	ITAPOÁ	27/01/2002	Enxurrada ou Inundações Bruscas	SE
			27/01/2003	Enxurrada ou Inundações	JL
118	2003	GARUVA	28/01/2003	Bruscas	SE
119	2003	JOINVILLE	20/04/2022	Enxurrada ou Inundações	
			29/01/2003	Bruscas Envurrada ou Inundações	SE
120	2003	ARAQUARI	30/01/2003	Bruscas	SE
121	2002	BARRA VELHA	09/01/2002	Granizo	SE
122	<mark>2002</mark>	BARRA VELHA	14/10/2002	Relacionados c/ riscos de colapso de sobrecarga do sistema de coleta de lixo	SE
123	2001	ARAQUARI	10/02/2001	Enxurrada ou Inundação Brusca	SE
124	2001	GARUVA	14/02/2001	Enxurrada ou Inundação Brusca	SE
125	2001	JOINVILLE	21/02/2001	Enxurrada ou Inundação Brusca	SE

126	2001	SÃO FRANCISCO DO SUL	28/03/2001	Enxurrada ou Inundação Brusca	SE
				Inundações Litorâneas	
127	2001	BARRA VELHA		Provocadas pela Brusca Invasão	
			06/05/2001	do Mar	SE
				Inundações Litorâneas	
128	2001	ITAPOÁ		Provocadas pela Brusca Invasão	
			06/05/2001	do Mar	SE
				Inundações Litorâneas	
129	2001	BALNEÁRIO DE BARRA DO SUL		Provocadas pela Brusca Invasão	
			06/05/2001	do Mar	SE
120	2000	ΙΤΑΡΟΆ		ACOMODAÇÃO DO SOLO	
120	2000	ПАРОА	16/08/2000	(Assoreamento)	SE
121	1000			ENCHENTES OU INUNDAÇÕES	
131	1999	JOINVILLE	29/01/1999	GRADUAIS	SE
122	1000			ENCHENTES OU INUNDAÇÕES	
132	1222	JOINVILLE	10/03/1999	GRADUAIS	SE
133	1998	ΙΤΑΡΟΆ	25/02/1998	Todo o Município (chuvas fortes)	SE

*NÃO UTILIZADOS NA ANÁLISE

LEGENDA

SITUAÇÃO DE EMERGÊNCIA	SE
ESTADO DE CALAMIDADE PÚBLICA	ECP
PRORROGAÇÃO SE	PSE