Projeto e desenvolvimento de um forno elétrico resistivo para aulas de tratamento térmico
Data
Autores
Título da Revista
ISSN da Revista
Título de Volume
Resumo
O aço é a liga do sistema Ferro-Carbono com a maior abrangência de aplicações no segmento industrial, sendo essa variedade associada à obtenção de diferentes microestruturas por meio de tratamentos térmicos, nos quais o material é aquecido e resfriado sob condições controladas. Para esse processo, faz-se necessário o uso de um forno de alta temperatura, no caso desse projeto, do tipo elétrico resistivo. Destarte, são apresentados os passos para a realização do dimensionamento desse equipamento, definindo os materiais da estrutura, as espessuras dos diferentes materiais isolantes térmicos, bem como o dimensionamento das resistências elétricas. Primeiramente, foram definidos parâmetros iniciais, como a temperatura de trabalho (800°C), temperatura externa da superfície (70°C), volume interno útil (27 L) e rampa de aquecimento (7°C/min). Em posse desses, e outros dados, tornou-se possível estabelecer o balanço de energia do sistema, viabilizando determinar a espessura dos isolantes térmicos. Definida a potência do forno e o diâmetro do fio resistivo, foi determinado o comprimento da resistência, diâmetro e passo do enrolamento. Ademais, com os projetos mecânico e elétrico, foi realizada a produção do equipamento, utilizando-se do espaço e ferramentas do IFSC campus Criciúma. Por fim, foram efetuados ciclos de aquecimento e resfriamento, bem como a avaliação da temperatura das superfícies externas, onde os resultados se mostraram condizentes com o projeto, apesar de duas temperaturas superficiais terem ultrapassado o limite estabelecido, contudo, não afetando no funcionamento do equipamento.
Steel is the alloy of the Iron-Carbon system with the broadest range of applications in the industrial sector. This variety is associated with the ability to obtain different microstructures through heat treatments, in which the material is heated and cooled under controlled conditions. For this process, a high-temperature furnace is required, specifically an electric resistive type in this project. Thus, the steps for designing this equipment are presented, defining the structural materials, the thicknesses of different thermal insulating materials, and the sizing of the electrical resistances. First, initial parameters were defined, such as the working temperature (800°C), external surface temperature (70°C), useful internal volume (27 L), and heating rate (7°C/min). With these and other data, it became possible to establish the system's energy balance, allowing for the determination of the thermal insulator thickness. Once the furnace power and the resistive wire diameter were defined, the resistance length, diameter, and winding pitch were determined. Additionally, with the mechanical and electrical designs, the equipment was manufactured using the space and tools of the IFSC Criciúma campus. Finally, heating and cooling cycles were carried out, along with an evaluation of the external surface temperatures. The results were consistent with the design, although two surface temperatures exceeded the established limit. However, this did not affect the equipment's operation.
Steel is the alloy of the Iron-Carbon system with the broadest range of applications in the industrial sector. This variety is associated with the ability to obtain different microstructures through heat treatments, in which the material is heated and cooled under controlled conditions. For this process, a high-temperature furnace is required, specifically an electric resistive type in this project. Thus, the steps for designing this equipment are presented, defining the structural materials, the thicknesses of different thermal insulating materials, and the sizing of the electrical resistances. First, initial parameters were defined, such as the working temperature (800°C), external surface temperature (70°C), useful internal volume (27 L), and heating rate (7°C/min). With these and other data, it became possible to establish the system's energy balance, allowing for the determination of the thermal insulator thickness. Once the furnace power and the resistive wire diameter were defined, the resistance length, diameter, and winding pitch were determined. Additionally, with the mechanical and electrical designs, the equipment was manufactured using the space and tools of the IFSC Criciúma campus. Finally, heating and cooling cycles were carried out, along with an evaluation of the external surface temperatures. The results were consistent with the design, although two surface temperatures exceeded the established limit. However, this did not affect the equipment's operation.
Descrição
Palavras-chave
Citação
ISRAEL, Matheus Redivo. Projeto e desenvolvimento de um forno elétrico resistivo para aulas de tratamento térmico. 2025. Trabalho de Conclusão de Curso (Bacharelado em Engenharia Mecatrônica) – Instituto Federal de Santa Catarina, Criciúma, 2025.
